

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 2, Issue 9, September 2015)

12

A High Speed Wallace Tree Multiplier Using
Modified Booth Algorithm for Fast Arithmetic

Circuits
S Sapna

Digital Communication and networking
P A College of Engineering

Mangalore, India
sapna00765@gmail.com

Vamshi U R
Digital Communication and networking

P A College of Engineering
Mangalore, India

vamshivalambra@gmail.com

Abstract— Designing multipliers that are of high-speed, low
power, and regular in layout are of substantial research interest.
Speed of the multiplier can be increased by reducing the
generated partial products. Many attempts have been made to
reduce the number of partial products generated in a
multiplication process; one of them is Wallace tree multiplier.
Wallace Tree CSA structures have been used to sum the partial
products in reduced time. In this paper Wallace tree construction
is investigated and evaluated. Speed of traditional Wallace tree
multiplier can be improved by using compressor techniques. In
this paper Wallace tree is constructed by traditional method and
with the help of compressor techniques such as 4:2 compressor,
5:2 compressor, 6:2 compressor, 7:2 compressor. Therefore,
minimizing the number of half adders used in a multiplier
reduction will reduce the complexity.

Index Terms—Component, formatting, style, styling, insert.
(key words)

I. INTRODUCTION
A multitude of various multiplier architectures have

been published in the literature, during the past few decades.
The multiplier is one of the key hardware blocks in most of
the digital and high performance systems such as digital signal
processors and microprocessors. With the recent advances in
technology, many researchers have worked on the design of
increasingly more efficient multipliers. They aim at offering
higher speed and lower power consumption even while
occupying reduced silicon area. This makes them compatible
for various complex and portable VLSI circuit
implementations. However, the fact remains that the area and
speed are two conflicting performance constraints. Hence,
innovating increased speed always results in larger area. In
this paper, we arrive at a better trade-off between the two, by
realizing a marginally increased speed performance through a
small rise in the number of transistors. The new architecture
enhances the speed performance of the widely acknowledged
Wallace tree multiplier. The structural optimization is
performed on the conventional Wallace multiplier, in such a
way that the latency of the total circuit reduces considerably.
The Wallace tree basically multiplies two unsigned integers.

The conventional Wallace tree multiplier architecture
comprises of an AND array for computing the partial

products, a carry save adder for adding the partial products so
obtained and a carry propagate adder in the final stage booth
algorithm, 3:2, and 4:2, 5:2.

 Fig 1 Proposed Architecture of Wallace tree multiplier using booth encoder
II. IMPLEMENTATION OF WALLACE TREE

MULTIPLIER
A Wallace tree is an efficient hardware implementation of a

digital circuit that multiplies two integers, devised by an
Australian Computer Scientist Chris Wallace in 1964.

Fig 2. Implementation of Wallace tree multiplier.

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 2, Issue 9, September 2015)

13

The Wallace tree has three steps:
Multiply (that is - AND) each bit of one of the arguments,

by each bit of the other, yielding results. Depending on position
of the multiplied bits, the wires carry different weights, for
example wire of bit carrying result of is 32 (see explanation of
weights below).

Reduce the number of partial products to two by layers of
full and half adders.

Group the wires in two numbers, and add them with a
conventional adder. The second phase works as follows. As
long as there are three or more wires with the same weight add
a following layer:  Take any three wires with the same weights and input

them into a full adder.  The result will be an output wire of the same weight
and an output wire with a higher weight for each three
input wires.

If there are two wires of the same weight left, input them
into a half adder. If there is just one wire left, connect it to the
next layer.

The benefit of the Wallace tree is that there are only
reduction layers, and each layer has propagation delay.

As making the partial products is and the final addition is,
the multiplication is only, not much slower than addition
(however, much more expensive in the gate count).

Naively adding partial products with regular adders would
require time. From a complexity theoretic perspective, the
Wallace tree algorithm puts multiplication in the class NC1.

These computations only consider gate delays and don't
deal with wire delays, which can also be very substantial. The
Wallace tree can be also represented by a tree of 3/2 or 4/2
adders.

Example:
N=4 , multiplying a3a2a1a0 by b3b2b1b0
1. First we multiply every bit by every bit:
weight 1 – a0b0
weight 2 –a0b1 ,a1b0
weight 4 – a0b2,a1b1 ,a2b0
weight 8 –a0b3 ,a1b2,a2b1,a3b0
weight 16 –a1b3,a2b2,a3b1
weight 32 – a2b3,a3b2
weight 64 – a3b3.
2. Reduction layer 1:
Pass the only weight-1 wire through, output: 1 weight-1

wire
Add a half adder for weight 2, outputs: 1 weight-2 wire, 1

weight-4 wire
Add a full adder for weight 4, outputs: 1 weight-4 wire, 1

weight-8 wire
Add a full adder for weight 8, and pass the remaining wire

through, outputs: 2 weight-8 wires, 1 weight-16 wire
Add a full adder for weight 16, outputs: 1 weight-16 wire, 1

weight-32 wire
Add a half adder for weight 32, outputs: 1 weight-32 wire,

1 weight-64 wire
Pass the only weight-64 wire through, output: 1 weight-64

wire

3. Wires at the output of reduction layer 1:
weight 1 - 1
weight 2 - 1
weight 4 - 2
weight 8 - 3
weight 16 - 2
weight 32 - 2
weight 64 - 2
4. Reduction layer 2:
Add a full adder for weight 8, and half adders for weights 4,

16, 32, 64
5. Outputs:
weight 1 - 1
weight 2 - 1
weight 4 - 1
weight 8 - 2
weight 16 - 2
weight 32 - 2
weight 64 - 2
weight 128 - 1
6. Group the wires into a pair integers and an adder to add

them.
III. WALLACE TREE MULTIPLIER

A fast process for multiplication of two numbers was
developed by Wallace. Using this method, a three step process
is used to multiply two numbers; the bit products are formed,
the bit product matrix is reduced to a two row matrix where
sum of the row equals the sum of bit products, and the two
resulting rows are summed with a fast adder to produce a final
product.

In the Wallace Tree method, three bit signals are
passed to a one bit full adder (“3W”) which is called a three
input Wallace Tree circuit, and the output signal (sum signal)
is supplied to the next stage full adder of the same bit, and the
carry output signal thereof is passed to the next stage full
adder of the same no of bit, and the carry output signal thereof
is supplied to the next stage of the full adder.

 Fig 3 Multipliers

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 2, Issue 9, September 2015)

14

An 8-bit multiplier is constructed by using Wallace tree
architecture .The architecture has been shown in Fig .Partial
products are added in 6 steps. In the Wallace Tree method, the
circuit layout is not easy although the speed of the operation is
high since the circuit is quite irregular The delay generated in
wallace tree multiplier can be further reduced by using
modified tree structures called compressors.

IV. COMPRESSOR
Compressors are arithmetic components, similar in
principle to parallel counters, but with two distinct
differences: (1) they have explicit carry-in and carry-out
bits; and (2) there may be some redundancy among the
ranks of the sum and carry-output bits.
4.1 [4:2] Compressor
The 4:2 compressor has 4 input bits and produces 2 sum
output bits (out0 and out1), it also has a carry-in (cin) and a
carry-out (cout) bit (thus, the total number of input/output
bits are 5 and 3); All input bits, including cin, have rank 0;
the two output bits have ranks 0 and 1 respectively, while
cout has rank 1 as well. Thus, the output of the 4:2
compressor is a redundant number; for example, out1 = 0
and cout = 1 is equivalent to out1 = 1 and cout = 0 in all
cases.

4.2 [5:2] Compressor
The 5:2 compressor has 5 input bits and produces 2 sum
output bits (sum and cout3), it also has a carry-in (cin1,
cin2) and a carry-out (cout1, cout2,cout3) bit (thus, the total
number of input/output bits are 7 and 4); All input bits,
including cin1, have rank 0 and cin2 has rank 2 ; the two
output bits have ranks 0 and 1 respectively, while cout2 has
rank 1 and cout1 has rank 2.

 Fig 4. [5:2] compressor I/O diagram.
4.3 [6:2] Compressor
The 6:2 compressor has 6 input bits and produces 2 sum
output bits (out0 and out1), it also has a carry-in (Cin0,
Cin1) and a carry-out (Cout0, Cout1) bit (thus, the total
number of input/output bits are 8 and 4); All input bits,
including Cin0, have rank 0 and Cin1 has rank 1 ; the two
output bits have ranks 0 and 1 respectively, while Cout0 has
rank 1 and Cout1 has rank 2 as shown in Fig 4.2.

 Fig 5. [6:2] compressor I/O diagram.

4.4 [7:2] Compressor
The 7:2 compressor has 7 input bits and produces 2 sum
output bits (out0 and out1), it also has a carry-in (Cin0,
Cin1) and a carry-out (Cout0, Cout1) bit (thus, the total
number of input/output bits are 9 and 4); All input bits,
including Cin0, have rank 0 and Cin1 has rank 1 ; the two
output bits have ranks 0 and 1 respectively, while Cout0 has
rank 1 and Cout1 has rank 2 as shown in Fig 4.3.

 Fig 6. [7:2] Compressor.
V. BOOTH ALGORITHM FOR PARTIAL PRODUCTS

GENERATION
To generate and reduce the number of partial products of
multiplier, proposed modified Booth Algorithm has been
used, In the proposed modified Booth Algorithm, multiplier
has been divided in groups of 4 bits and each groups of 4
bits have been operational according to modified Booth
Algorithm for generation of partial products 0±1A, ±2A,
±3A, ±4A, ±5A, ±6A, ±7A . These partial products are
summed using compressors in structure of Wallace Tree .In
radix-8 Booth Algorithm, multiplier operand B is
Partitioned into 11 groups having each group of 4 bits .In
first group, first bit is taken zero and other bits are least
Significant three bit of multiplier operand. In second group,
first bit is most significant bit of first group and other bits
are next three bit of multiplier operand. In third group, first
bit is most significant bit of second group and other bits are
next three bits of multiplier operand. This process is carried
on. For each group, Partial product is generated using
multiplicand operand A. For n bit multiplier there is n/3 or
[n/3 + 1] groups and partial products in proposed modified
Booth Algorithm radix-8. Table I for Proposed radix-8
modified Booth algorithm has been designed.

VI. COMPRESSOR FOR PARTIAL PRODUCTS
REDUCTION

 The latency in the Wallace tree multiplier can be reduced
by decreasing the number of adders in the partial products
reduction stage. In the proposed architecture, multi bit
compressors are used for realizing the reduction in the
number of partial product addition stages. The combined
factors of low power, low transistor count and minimum
delay makes the 5:2 , 4:2 and 3:2 compressors, the
appropriate choice. In these compressors, the outputs.
generated at each stage are efficiently used by replacing the

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 2, Issue 9, September 2015)

15

XOR blocks with multiplexer blocks so that the critical path
delay is minimized. The various adder structures in the
conventional architecture are replaced by compressors.

VII. COMPRESSOR ARCHITECTURE
A 3-2 compressor takes 3 inputs x1, x2, x3 and generates 2
outputs, the sum bit s, and the carry bit .The compressor is
governed by the basic equation
x + x + x = Sum + 2 * Carry
The 3-2 compressor can also be employed as a full adder
cell when the third input is considered as the Carry input
from the previous compressor block or X3 = C . Existing
architectures shown in Fig.2 (b) employ two XOR gates in
the critical path. The fig shows governing the existing 3-2
compressor outputs are shown below,

Fig 7. Flow chart
VIII. EXPERIMENTAL & RESULT

The above Wallace tree multiplier with booth recoding
logic has been implemented by coding in verilog HDL and
synthesis is performed by verilog. The performance is
compared with booth multiplier of radix-8 and with normal
wall ace multiplier. By using the proposed multiplier of 32-bit
length we achieved the delay which booth recoding logic and
also by compressor circuits. The following table 2 shows the
comparisons of different channel is less than using normal
Wallace tree multiplier. This is achieved by combined use of
multipliers based on timing analysis.

IX. CONCLUSION

The proposed 32x32 bit Booth encoded ± Wallace tree
multiplier has been designed .and the comparison of
proposed multiplier with existing Wallace tree multiplier,
multiplier designed using Vedic mathematics, booth
multiplier, default multiplier present in Xilinx fpga vertex-6
low power has been shown in table II. Wallace tree using
5:2, 4:2 and 3:2 compressors, radix-8 modified Booth
Algorithm improve the speed of the proposed multiplier
because radix-8 reduces no. of partial products, and 5:2, 4:2
and 3:2 compressor reduces no. of levels in Wallace
structure. It provides less delay 9.536 ns as compared to
existing Wallace tree multiplier. The results prove that the
proposed architecture is more efficient than the existing one
in terms of delay. This approach may be well suited for
multiplication of numbers with more than 16 bit size for
high speed applications. The power of the proposed
multiplier can be explored to implement high performance
multiplier in VLSI applications. Wallace tree multiplier
using booth algorithm is very a good technique for high
speed applications, its implementation with different logics

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 2, Issue 9, September 2015)

16

in VLSI. Further the work can be extended for optimization
of said multiplier to improve the power.

REFERENCES
[1]. Vinoth, C.; Bhaaskaran, V.S.K.; Brindha, B.; Sakthikumaran,

S.;Kavinilavu, V.; Bhaskar, B.; Kanagasabapathy, M.; and Sharath,
B.;"A novel low power and high speed Wallace tree multiplier for RISC processor," 3rd International Conference on Electronics
Computer Technology (ICECT), 2011, vol.1, pp.330-334, 8-10 April
2011.

[2]. Sreehari Veeramachaneni; Kirthi M Krishna; Lingamneni
Avinash;Sreekanth Reddy Puppala and M.B. Srinivas; "Novel Architectures for International Conference on VLSI Design, 2007,
pp.324-329, Jan.2007.

[3]. Prasad, K. and Parhi, K.K.; "Low-power 4-2 and 5-2 compressors,"
Conference Record of the Thirty-Fifth Asilomar Conference on
Signals, Systems and Computers, 2001, vol.1, no.,pp.129-133 vol.1, 4-7
Nov. 2001.

[4]. Chen Ping-hua and Zhao Juan; "High-speed Parallel 32×32-b Multiplier
Using a Radix-16 Booth algorithm . Encoder," Third International Symposium on Intelligent Information Technology Application
Workshops, 2009. IITAW '09, pp.406-409, 21-22 Nov. 2009.

[5]. Weinan Ma and Shuguo Li; "A new high compression compressor for
large multiplier," Solid-State and Integrated-Circuit. Technology,2008.
ICSICT 2008. 9th International Conference on , vol., no., pp.1877-1880,
20-23 Oct. 2008.

[6]. Shen-Fu Hsiao; Ming-Roun Jiang; Jia-Sien Yeh; , "Design of high
speed low-power 3-2 counter and 4-2 compressor for fast multipliers,"
Electronics Letters , vol.34, no.4, pp.341-343, 19 Feb 1998.

