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Abstract— Around the globe static allocation of spectrum scheme 
is commonly used which is also known as command and control. 
In this method, the radio spectrum is divided into spectrum 
bands that are allocated to specific technology based services, 
such as mobile, fixed, broadcast, fixed satellite and mobile 
satellite services on exclusive basis. This command-and-control-
based spectrum management framework guarantees that the 
radio frequency spectrum will be exclusively licensed to a license 
user and can use the spectrum without any interference.     

I. INTRODUCTION 
Cognitive radio has emerged as a promising technology for 
maximizing the utilization of the limited radio bandwidth 
while accommodating the increasing amount of services and 
applications in wireless networks. A cognitive radio (CR) 
transceiver is able to adapt to the dynamic radio environment 
and the network parameters to maximize the utilization of the 
limited radio resources while providing flexibility in wireless 
access. The key features of a CR transceiver are awareness of 
the radio environment (in terms of spectrum usage, power 
spectral density of transmitted/received signals, wireless 
protocol signaling) and intelligence. This intelligence is 
achieved through learning for adaptive tuning of system 
parameters such as transmit power, carrier frequency, and 
modulation strategy (at the physical layer), and higher-layer 
protocol parameters. 
Cognition 
In a way, it can be argued that cognitive radio draws its 
inspiration from cognitive science. The roots of cognitive 
science are intimately linked to two scientific meetings that 
were held in 1956: 
• The Symposium on Information Theory, which was 
held at the Massachusetts Institute of Technology (MIT). That 
meeting was attended by leading authorities in the information 
and human sciences, including Allen Newell (computer 
scientist), the Nobel Laureate, Herbert Simon (political 
scientist and economist), and Noam Chomskey (linguist). As a 
result of that symposium, linguists began to theoretize about 
language, which was to be found subsequently in the theory of 
computers: the language of information processing. 
• The Dartmouth Conference, which was held at 
Dartmouth College, New Hamp- shire. The conference was 
attended by the founding fathers of artificial intelligence, 
namely, John mccarthy, Marvin Minsky and Allen Newel. The 
goal of this second meeting was to think about intelligent 
machines. The Dartmouth Conference was also attended by 
Frank Rosenblatt (psychologist), the founder of (artificial) 

                                                           
 

neural networks. At the conference, Rosenblatt described a 
novel method for supervised learning, which he called the 
perceptron. However, interest in neural networks was short 
lived: in a monograph published in 1969, Minsky and Papert 
used mathematics to demonstrate that there are fundamental 
limits on what Rosenblatt’s perceptron could compute. The 
Minsky-Papert monograph, coupled with a few other factors, 
contributed to the dampening of interest in neural networks in 
the 1970s. We had to wait for the pioneering contributions of 
John Hopfield on neurodynamic systems and Rumlehart, 
Hinton and Williams on supervised learning in the 1980s for 
the revival of research interest in neural networks. 
 In a book entitled “The Computer and the Mind,” 
Johnson-Laird postulated the following tasks of a human 
mind: 
• To perceive the world 
• To learn, to remember and to control actions 
• To think and create new ideas 
• To control communication with others 
• To create the experience of feelings, intentions and 
self-awareness. 
Johnson-Laird, a prominent psychologist and linguist, went on 
to argue that theories of the mind should be modeled in 
computational terms. Much of what has been identified by 
Johnson-Laird as the mind’s main tasks and their modeling in 
computation terms apply equally well to cognitive radio. 
Indeed, we can go on to offer the following definition for 
cognitive radio involving multiple users. 
 The cognitive radio network is an intelligent 
multiuser wireless communication system that embodies the 
following list of primary tasks: 
• To perceive the radio environment (i.e., outside 
world) by empowering each user’s receiver to sense the 
environment on continuous time 
• To learn from the environment and adapt the 
performance of each transceiver to statistical variations in the 
incoming RF stimuli 
• To facilitate communication between multiple users 
through cooperation in a self-organized manner. 
• To control the communication processes among 
competing users through the proper allocation of available 
resources 
• To create the experience of intentions and self-
awareness 
• The primary objective of all these tasks, performed in 
real time, is twofold: 
• To provide highly reliable communication for all 
users 
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• To facilitate efficient utilization of the radio spectrum 
in a fair-minded way 
Two Complementary Visions of Cognitive Radio 
In the first doctoral dissertation on cognitive radio published 
in 2000, Joseph Mitola described how a cognitive radio could 
enhance the flexibility of personal wireless services through a 
new language called the radio knowledge representation 
language. Mitola followed this dissertation with the 
publication of a book on cognitive radio architecture. A 
distinctive feature of both publications is a cognitive computer 
cycle, which encapsulates the various actions expected from a 
cognitive radio, as depicted in Fig.2.1. Through deployment of 
the right software control, it is envisioned that a cognitive 
radio could orient itself by establishing priorities, then create 
plans decide and finally take the appropriate action in response 
to sensing of the RF environment. As envisioned in Fig. 2.1, 
provisions are also made for the cognitive radio to do two 
things: 
• Bypass the planning phase and go directly to the 
decision phase in the event of an urgent situation 
• Bypass the two phases of planning and decision-
making by proceeding immediately to the action phase in the 
event of an emergency. 
 In the first journal paper published in 2005, Simon 
Haykin presented detailed expositions of the signal-
processing, adaptive and learning procedures that lie at the 
heart of cognitive radio. In particular, the paper identifies three 
specific tasks: 
1. Radio-scene analysis (RSA), which encompasses 
• Estimation of interference temperature of the radio 
environment localized around a user’s receiver 
• Detection of spectrum holes 
• Predictive modeling of the environment. 
 2. Channel identification, which is needed for improved 
spectrum utilization and coherent detection of original 
information-bearing signal at the user’s receiver. 
3. Dynamic spectrum management (DSM) and transmit-power 
control (TPC), which culminates in decision-making and 
action taken by the user’s transmitter in response to the 
analysis of RF stimuli picked up by the receiver. 
 

 
Figure 1: Cognitive computer cycle. 

Tasks (1) and (2) are performed in the receiver, and task (3) is 
performed in the transmitter, as depicted in the cognitive 
signal-processing cycle in Figure 1. The depiction is presented 

in the context of a multiuser network. 
For the transmitter to work harmoniously with the receiver 
there is an obvious need for a feedback channel connecting the 
receiver to the transmitter as shown in above figure1. Through 
the feedback channel, the receiver is enabled to convey to the 
transmitter two essential forms of information: 
• Information on the performance of the forward link 
for adaptive modulation 
• Information on the spectral state of the RF 
environment in the local neighborhood of the receiver. 
The cognitive radio is therefore, by necessity, an example of 
a global closed-loop feedback control system. 
 

 
Figure 2: Basic signal-processing cycle for user m in a cognitive radio 
network; the diagram also includes elements of the receiver of user m. 

 
II. FFT-AVERAGING RATIO ALGORITHM 

 
In this project, we will be dealing with Energy Detection 
based Spectrum Sensing. Here a Fast Fourier transform (FFT) 
based spectrum sensing algorithm will be proposed. The 
proposed algorithm is called FAR denoting FFT-averaging-
ratio. The FFT-based spectrum sensing algorithm FAR is more 
implementation-friendly. To have a decision threshold 
insensitive to noise level, FAR uses ratio formed from one or 
more blocks of received signal samples as a decision variable. 
 
A.  Algorithm  

 
Step1 – A random signal is generated. 
Step2 – Segmentation of the signal is done into T frames. 
Step3 – Multiplication of frames with a window function. 
Step4 – FFT is applied to the windowed frame. 
Step5 – Power spectral density is calculated. 
Step6 – Averaging of T consecutive frames is calculated.  
Step7 –Formation of decision variable 
Step8 – Finally Threshold is applied and decisions on channel 
states are made. 
 
 
B. Flow Chart 
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Figure 3: Flow Chart of FAR Algorithm. 

 
 

III.  DESCRIPTION 
 

A. Window Function 
The segmented frames are multiplied with the rectangular 

window function to get the desired spectral shape. A window 
function (also known as an apodization function or tapering 
function) is a mathematical function that is zero-valued outside 
of some chosen interval. For instance, a function that is 
constant inside the interval and zero elsewhere is called a 
rectangular window, which describes the shape of its graphical 
representation. When another function or waveform/data-
sequence is multiplied by a window function, the product is 
also zero-valued outside the interval: all that is left is the part 
where they overlap; the "view through the window".  

 
Windowing of a simple waveform, like cos ωt causes its 

Fourier transform to develop non-zero values (commonly 
called spectral leakage) at frequencies other than ω. The 
leakage tends to be worst (highest) near ω and least at 
frequencies farthest from ω. The rectangular window has 
excellent resolution characteristics for sinusoids of comparable 
strength, but it is a poor choice for sinusoids of disparate 
amplitudes. This characteristic is sometimes described as low-
dynamic-range.  

  
At the other extreme of dynamic range are the windows 

with the poorest resolution. These high-dynamic-range low-
resolution windows are also poorest in terms of sensitivity; 
this is, if the input waveform contains random noise close to 
the frequency of a sinusoid, the response to noise, compared to 
the sinusoid, will be higher than with a higher-resolution 
window. In other words, the ability to find weak sinusoids 
amidst the noise is diminished by a high-dynamic-range 
window. High-dynamic-range windows are probably most 
often justified in wideband applications, where the spectrum 
being analyzed is expected to contain many different 
components of various amplitudes. 

 
In between the extremes are moderate windows, such as 

Hamming and Hann. They are commonly used in narrowband 
applications, such as the spectrum of a telephone channel. In 
summary, spectral analysis involves a trade-off between 
resolving comparable strength components with similar 
frequencies and resolving disparate strength components with 
dissimilar frequencies. That trade off occurs when the window 
function is chosen. When the input waveform is time-sampled, 
instead of continuous, the analysis is usually done by applying 

a window function and then a discrete Fourier transform 
(DFT). But the DFT provides only a coarse sampling of the 
actual DTFT spectrum. Applications of window functions 
include spectral analysis, filter design, and beam forming. In 
typical applications, the window functions used are non-
negative smooth "bell-shaped" curves, though rectangle, 
triangle, and other functions can be used. 

 
The window used in this project is rectangular window. 

The rectangular window, also sometimes called `uniform 
window', is given by: 

1)( =nw  

   
i.e. equivalent to using no window at all. Its transfer 

function and characteristic bandwidths are shown in Figure 4. 
 

 
Figure 4: Rectangular window 

 
NENBW = 1:0000 bins 
W3 dB = 0:8845 bins 
emax = -3:9224 dB = -36:3380% 
  
The first zero is located at f = ±1:00 bins. The highest side 

lobe is -13:3 dB, located at f = ±1:43 bins. The side lobes drop 
at a rate of f-1. Over lapping makes no sense for the 
Rectangular window. While W3 dB is the narrowest of all 
windows, emax and the spectral leakage are the worst of all 
windows considered here. 

B. Fast Fourier Transform 
A fast Fourier transform (FFT) is an algorithm to compute 

the discrete Fourier transform (DFT) and its inverse. There are 
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many different FFT algorithms involving a wide range of 
mathematics, from simple complex-number arithmetic to 
group theory and number theory; below we gives an overview 
of the available techniques and some of their general 
properties, while the specific algorithms are described in 
subsidiary articles linked below. 

  
The DFT is obtained by decomposing a sequence of 

values into components of different frequencies. This 
operation is useful in many fields but computing it directly 
from the definition is often too slow to be practical. An FFT is 
a way to compute the same result more quickly: computing the 
DFT of N points in the naive way, using the definition, takes 
O(N2) arithmetical operations (O only denotes an upper 
bound), while an FFT can compute the same DFT in only O(N 
log N) operations. The difference in speed can be substantial, 
especially for long data sets where N may be in the thousands 
or millions. In practice, the computation time can be reduced 
by several orders of magnitude in such cases, and the 
improvement is roughly proportional to N/log(N). This huge 
improvement made the calculation of the DFT practical; FFTs 
are of great importance to a wide variety of applications, from 
digital signal processing and solving partial differential 
equations to algorithms for quick multiplication of large 
integers. 

An FFT computes the DFT and produces exactly the same 
result as evaluating the DFT definition directly; the only 
difference is that an FFT is much faster.  

Let x0, ...., xN-1 be complex numbers. The DFT is 
defined by the formula 
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Evaluating this definition directly requires O(N2) operations: 
there are N outputs Xk, and each output requires a sum of N 
terms. An FFT is any method to compute the same results in 
O(N log N) operations. More precisely, all known FFT 
algorithms require O(N log N) operations, although there is no 
known proof that a lower complexity score is impossible. 

 
To illustrate the savings of an FFT, consider the count of 

complex multiplications and additions. Evaluating the DFT's 
sums directly involves N2 complex multiplications and 
N(N−1) complex additions [of which O(N) operations can be 
saved by eliminating trivial operations such as multiplications 
by 1]. The well-known radix-2 Cooley–Tukey algorithm, for N 
a power of 2, can compute the same result with only 
(N/2)log2(N) complex multiplies (again, ignoring 
simplifications of multiplications by 1 and similar) and 
Nlog2(N) complex additions.  

  
In practice, actual performance on modern computers is 

usually dominated by factors other than the speed of arithmetic 
operations and the analysis is a complicated subject, but the 
overall improvement from O(N2) to O(N log N) remains. 

 
Algorithms used for FFT 

The Cooley–Tukey algorithm is the most common fast 
Fourier transform (FFT) algorithm. It re-expresses the discrete 
Fourier transform (DFT) of an arbitrary composite size N = 
N1N2 in terms of smaller DFTs of sizes N1 and N2, 
recursively, in order to reduce the computation time to O(N 
log N) for highly-composite N (smooth numbers). 

 
Radix-2 decimation-in-time (DIT) FFT is the simplest and 

most common form of the Cooley–Tukey algorithm. Radix-2 
DIT divides a DFT of size N into two interleaved DFTs (hence 
the name "radix-2") of size N/2 with each recursive stage. The 
discrete Fourier transform (DFT) is defined by the formula: 
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Where   is an integer ranging from 0 to N-1. 
 
Radix-2 DIT first computes the DFTs of the even-indexed 

inputs x2m (x1, x2 …..xN-2) and of the odd-indexed  inputs  
x2m+1 (x1, x3 …..xN-2) , and then combines those two results 
to produce the DFT of the whole sequence. This idea can then 
be performed recursively to reduce the overall runtime to O (N 
log N). This simplified form assumes that N is a power of two; 
since the number of sample points N can usually be chosen 
freely by the application, this is often not an important 
restriction. 

 
The Radix-2 DIT algorithm rearranges the DFT of the 

function xn into two parts: a sum over the even-numbered 
indices n=2m and a sum over the odd-numbered indices 
n=2m+1 : 
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 One can factor a common multiplier   out of the 

second sum, as shown in the equation below. It is then clear 
that the two sums are the DFT of the even-indexed part x2m 
and the DFT of odd-indexed part   of the function  . Denote the 
DFT of the Even-indexed inputs   by   and the DFT of the odd-
indexed inputs   by   and we obtain: 

 

 
 
 However, these smaller DFTs have a length of N/2, 

so we need compute only N/2 outputs: thanks to the 
periodicity properties of the DFT, the outputs for 

NkN <≤2/  from a DFT of length N/2 are identical to the 

outputs for . That is, kNk EE =+ 2/   and kNk OO =+ 2/  . The 

phase factor ]/2exp[ Nikπ−   (called a twiddle factor) obeys 

the relation: 
]/2exp[/2exp[]/)2/(2exp[ NikNikeNNki i πππ π −−=−=+− −   
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flipping the sign of the   terms. Thus, the whole DFT can be 
calculated as follows: 

 

 
 

This result, expressing the DFT of length N recursively in 
terms of two DFTs of size N/2, is the core of the radix-2 DIT 
fast Fourier transform. The algorithm gains its speed by re-
using the results of intermediate computations to compute 
multiple DFT outputs. Note that final outputs are obtained by 
a +/− combination of   and  , which is simply a size-2 DFT 
(sometimes called a butterfly in this context); when this is 
generalized to larger radices below, the size-2 DFT is replaced 
by a larger DFT (which itself can be evaluated with an FFT). 
 

C. Power spectral density 
 
For continued signals that describe, for example, stationary 
physical processes, it makes more sense to define a power 
spectral density (PSD), which describes how the power of a 
signal or time series is distributed over the different 
frequencies. Here, power can be the actual physical power, or 
more often, for convenience with abstract signals, can be 
defined as the squared value of the   signal. The total power P 
of a signal is the following time average: 
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In analyzing the frequency content of the signal  , one 
might like to compute the ordinary Fourier transform  ; 
however, for many signals of interest this Fourier transform 
does not exist. Because of this, it is advantageous to work with 
a truncated Fourier transform, where the signal is integrated 
only over a finite interval [0, T]: 
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Then the power spectral density can be defined as: 
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Here E denotes the expected value; explicitly, we have 
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Using such formal reasoning, one may already guess that 
for a stationary random process, the power spectral density   
and the autocorrelation function of this signal 

>+=< )()()( TtXtXTγ  

should be a Fourier transform pair. Provided that   is 
absolutely integrable, which is not always true, then 
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The power of the signal in a given frequency band    can 
be calculated by integrating over positive and negative 
frequencies, 
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Where Fis the integrated spectrum whose derivative is More 
generally, similar techniques may be used to estimate a time-
varying spectral density. The definition of the power spectral 
density generalizes in a straightforward manner to finite time-
series    with Nn ≤≤1  , such as a signal sampled at discrete 

times   for a total measurement period  tNT ∆= . 
2
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In a real-world application, one would typically average 
this single-measurement PSD over several repetitions of the 
measurement to obtain a more accurate estimate of the 
theoretical PSD of the physical process underlying the 
individual measurements. This computed PSD is sometimes 
called periodogram. If two signals both possess power spectral 
densities, then a cross-spectral density can be calculated by 
using their cross-correlation function. 

 
Properties of the power spectral density 
Some properties of the PSD include: 
• The spectrum of a real valued process is an even 

function of frequency: 

)()( wSwS xxxx =−  

 • If the process is continuous and purely 
indeterministic, the autocovariance function can be 
reconstructed by using the Inverse Fourier transform. 

The integrated spectrum or power spectral distribution  is 
defined as 

∫ ∞−
=

w

xx dwwSwF ')'()(  

   
IV.  RESULTS 

 
The input to the cognitive radio is the random signal that 

we generate using random variables and the input random 
signal is shown in Fig 5 below 

 
Figure 5: input random signal to the receiver 
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 The output is a set of vectors that show the available 
channels that can be used for transmission of data as well as 
reception of data. The cognitive radio will change its reception 
as well as transmission parameters according to the available 
channels. The available channels are shown in figure 6. 
 

 
Figure 6: available channels 

 
Figure7: Plot of Primary User Availability Vs Frequency 

 
Figure8: Plot of Decision Variable VS Frequency 

  
V. ADVANTAGES AND DISADVANTAGES 

 
Advantages: 
 
• Effective to detect signals at low Signal to Noise ratio 

(SNR) 
• Efficient Bandwidth (BW) use 
• Less complexity 
• Low power consumption 
• Friendly to Hardware Implementation 
 
 

Limitations 
 
Although energy detection based FAR algorithm has low 
computational and implementation complexities, it is quite 
sensitive to noise uncertainty. Also the Sensing time taken 
may be high 

 
VI.  CONCLUSION AND FUTURE WORK 

 
Spectrum is a very valuable resource in wireless 
communication systems and it has been a major research topic 
from last several decades. Cognitive radio is a promising 
technology which enables spectrum sensing for opportunistic 
spectrum usage by providing a means for the use of white 
spaces. Considering the challenges raised by cognitive radios, 
the use of spectrum sensing method appears as a crucial need 
to achieve satisfactory results in terms of efficient use of 
available spectrum and limited interference with the licensed 
primary users. As described in this report, the development of 
the cognitive radio network requires the involvement and 
interaction of many advanced techniques, including distributed 
spectrum sensing, interference management, cognitive radio 
reconfiguration management, and cooperative  
communications.  
 

Furthermore, in order to fully realize the CR system in 
wireless communications for efficient utilization of scarce RF 
spectrum, the method used in identifying the interference 
and/or spectrum sensing should be reliable and prompt so that 
the primary user will not suffer from CR system to utilize their 
licensed spectrum. We presented the different signal 
processing methods by grouping them into three basic groups 
and their details in turn. We have also presented the pros and 
cons of different spectrum sensing methods, and performed 
the comparison in terms of operation, accuracies, complexities 
and implementations. There exist number of issues to be 
addressed in terms of primary signal detection time, hardware 
requirements and computational complexities. FAR algorithm 
for spectrum sensing has been proposed and selection for 
major parameters of FAR algorithm has been discussed. FAR 
algorithm is designed to compromise between the performance 
and implementation complexity. In particular, FAR algorithm 
has a constant threshold feature which is greatly in favor of 
blind sensing. 

In future I would like to go for real time spectrum sensing 
for cognitive radio using FPGA’s and also try to minimize the 
disadvantages by enhancing the algorithm. 
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