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Abstract— Around the globe static allocation of spectrum dzeme
is commonly used which is also known as command amdntrol.

In this method, the radio spectrum is divided intospectrum

bands that are allocated to specific technology bed services,
such as mobile, fixed, broadcast, fixed satellite nd mobile

satellite services on exclusive basis. This commaadd-control-

based spectrum management framework guarantees thathe

radio frequency spectrum will be exclusively licensd to a license
user and can use the spectrum without any interferece.

I.  INTRODUCTION
Cognitive radio has emerged as a promising teclgyofor
maximizing the utilization of the limited radio bdwmidth
while accommodating the increasing amount of sesviand
applications in wireless networks. A cognitive @diICR)
transceiver is able to adapt to the dynamic radidrenment
and the network parameters to maximize the utibmadf the
limited radio resources while providing flexibiliip wireless
access. The key features of a CR transceiver aaecawss of
the radio environment (in terms of spectrum usgmmyer
spectral density of transmitted/received signaldrelass
protocol signaling) and intelligence. This intefligce is
achieved through learning for adaptive tuning oftsm
parameters such as transmit power, carrier frequeand
modulation strategy (at the physical layer), anghbi-layer
protocol parameters.
Cognition
In a way, it can be argued that cognitive radiowdrats
inspiration from cognitive science. The roots ofgeitive
science are intimately linked to two scientific riegs that
were held in 1956:
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neural networks. At the conference, Rosenblatt rilesd a
novel method for supervised learning, which he echlthe
perceptron. However, interest in neural networks \short
lived: in a monograph published in 1969, Minsky drapert
used mathematics to demonstrate that there areafoectal
limits on what Rosenblatt's perceptron could coraputhe
Minsky-Papert monograph, coupled with a few otlaatdrs,
contributed to the dampening of interest in neasdivorks in
the 1970s. We had to wait for the pioneering cobntions of
John Hopfield on neurodynamic systems and Rumlghart
Hinton and Williams on supervised learning in tfg#8Qs for
the revival of research interest in neural networks

In a book entitled “The Computer and the Mind,”
Johnson-Laird postulated the following tasks of @amhn
mind:

. To perceive the world

. To learn, to remember and to control actions

. To think and create new ideas

. To control communication with others

. To create the experience of feelings, intentiand

self-awareness.

Johnson-Laird, a prominent psychologist and lingwignt on
to argue that theories of the mind should be matafe
computational terms. Much of what has been idextifby
Johnson-Laird as the mind’s main tasks and thenlatiog in
computation terms apply equally well to cognitivadio.
Indeed, we can go on to offer the following defunit for
cognitive radio involving multiple users.

The cognitive radio network is an intelligent

multiuser wireless communication system that emémdhe

. The Symposium on Information Theory, which wasfollowing list of primary tasks:

held at the Massachusetts Institute of Technold4fyf . That
meeting was attended by leading authorities inrfemation

. To perceive the radio environment (i.e., outside
world) by empowering each user’'s receiver to setise

and human sciences, including Allen Newell (computeenvironment on continuous time

scientist), the Nobel Laureate, Herbert Simon (ali
scientist and economist), and Noam Chomskey (Istjuls a
result of that symposium, linguists began to thémeeabout
language, which was to be found subsequently inhtbery of
computers: the language of information processing.

. The Dartmouth Conference, which was held ate

Dartmouth College, New Hamp- shire. The conferewes
attended by the founding fathers of artificial Ihgence,
namely, Johmccarthy, Marvin Minsky and Allen Newel. The
goal of this second meeting was to think aboutlligent
machines. The Dartmouth Conference was also attebge
Frank Rosenblatt (psychologist), the founder oftif{eial)

. To learn from the environment and adapt the
performance of each transceiver to statisticalatams in the
incoming RF stimuli

. To facilitate communication between multiple sser
through cooperation in a self-organized manner.

To control the communication processes among
competing users through the proper allocation dilable
resources

. To create the experience of intentions and self-
awareness

. The primary objective of all these tasks, perfednm
real time, is twofold:

. To provide highly reliable communication for all
users
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. To facilitate efficient utilization of the radgpectrum
in a fair-minded way

Two Complementary Visions of Cognitive Radio

In the first doctoral dissertation on cognitive imgublished
in 2000, Joseph Mitola described how a cognitivdiaaould
enhance the flexibility of personal wireless seggithrough a
new language called the radio knowledge representat
language. Mitola followed this dissertation with eth
publication of a book on cognitive radio architeetu A
distinctive feature of both publications is a cdiye computer
cycle, which encapsulates the various actions @gdefcom a
cognitive radio, as depicted in Fig.2.1. Througpldgment of
the right software control, it is envisioned thatcagnitive
radio could orient itself by establishing prior#tjethen create
plans decide and finally take the appropriate adtioresponse
to sensing of the RF environment. As envisione®im 2.1,
provisions are also made for the cognitive radiodéotwo
things:

. Bypass the planning phase and go directly to the

decision phase in the event of an urgent situation

. Bypass the two phases of planning and decision-

making by proceeding immediately to the action phiasthe
event of an emergency.
In the first journal paper published in 2005, Simo

Haykin presented detailed expositions of the signal

processing, adaptive and learning procedures taaatl the
heart of cognitive radio. In particular, the pajuntifies three
specific tasks:

1. Radio-scene analysis (RSA), which encompasses

. Estimation of interference temperature of theioad
environment localized around a user’s receiver
. Detection of spectrum holes

. Predictive modeling of the environment.
2. Channel identification, which is needed for mnmed
spectrum utilization and coherent detection of ioag
information-bearing signal at the user’s receiver.
3. Dynamic spectrum management (DSM) and transavitep
control (TPC), which culminates in decision-makirmd
action taken by the user’'s transmitter in respotwsethe
analysis of RF stimuli picked up by the receiver.

Orient
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Figure 1: Cognitive computer cycle.

Tasks (1) and (2) are performed in the received,task (3) is
performed in the transmitter, as depicted in thgndove
signal-processing cycle in Figure 1. The depict®presented

in the context of a multiuser network.
For the transmitter to work harmoniously with theceiver
there is an obvious need for a feedback channelemiimg the
receiver to the transmitter as shown in above &guirhrough
the feedback channel, the receiver is enabled neggoto the
transmitter two essential forms of information:

. Information on the performance of the forwardklin
for adaptive modulation
. Information on the spectral state of the RF

environment in the local neighborhood of the reeeiv
The cognitive radio is therefore, by necessityeaample of
a global closed-loop feedback control system.

Radio Environment
(Wireless World)

Figure 2: Basic signal-processing cycle for usein a cognitive radio
network; the diagram also includes elements ofébeiver of usem.

II. FFT-AVERAGINGRATIO ALGORITHM

In this project, we will be dealing with Energy Betion
based Spectrum Sensing. Here a Fast Fourier tramgferT)
based spectrum sensing algorithm will be proposHue
proposed algorithm is called FAR denoting FFT-agerg-
ratio. The FFT-based spectrum sensing algorithm BARore
implementation-friendly. To have a decision thrddho
insensitive to noise level, FAR uses ratio formexhf one or
more blocks of received signal samples as a decigidable.

A. Algorithm

Stepl — A random signal is generated.

Step2 — Segmentation of the signal is done intamés.
Step3 — Multiplication of frames with a window fuioe.
Step4 — FFT is applied to the windowed frame.

Step5 — Power spectral density is calculated.

Step6 — Averaging of T consecutive frames is cateul.
Step7 —Formation of decision variable

Step8 — Finally Threshold is applied and decisimmshannel
states are made.

B. Flow Chart
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a window function and then a discrete Fourier tiams
T segmentation (— Windowing [—{  FFT L PO (DFT). But the DFT provides only a coarse samplifighe
actual DTFT spectrum. Applications of window fulcts
include spectral analysis, filter design, and bdarming. In
ouput | Ratio typical applications, the window functions used aren-
— resholding p—— Computation F— Averaging ) " "
negative smooth "bell-shaped" curves, though rebtan
triangle, and other functions can be used.

Figure 3: Flow Chart of FAR Algorithm.

The window used in this project is rectangular vewwd
The rectangular window, also sometimes called Qumif
I1l. DESCRIPTION window', is given by:
. . w(n) =1
A. Window Function
The segmented frames are multiplied with the repibar
window function to get the desired spectral sha&paindow
function (also known as an apodization functiontapering
function) is a mathematical function that is zeedued outside
of some chosen interval. For instance, a functibat tis
constant inside the interval and zero elsewhereaited a
rectangular window, which describes the shapesadriaphical
representation. When another function or wavefoatad
sequence is multiplied by a window function, thedarct is
also zero-valued outside the interval: all thaefs is the part
where they overlap; the "view through the window".

i.e. equivalent to using no window at all. Its s#ar
function and characteristic bandwidths are showrigure 4.

Rectangular

NENB W= 1000 bins

2 B

=

nomaleed wmdow value

L L L .
o n2 04 0e 08 1

Windowing of a simple waveform, like cest causes its index N Sequeny offc e
Fourier transform to develop non-zero values (comigno o w083 bins g e e = 30224 = 363350%
called spectral leakage) at frequencies other tharnThe gl e / ) 0 ™ 1
leakage tends to be worst (highest) nearand least at Fap| w14X \ g \ ]
frequencies farthest fronm. The rectangular window has 2 N | ".‘ N E '\\ ]
excellent resolution characteristics for sinus@itisomparable E=r/\ | I'|II IERVAYEE \]
strength, but it is a poor choice for sinusoidsdidparate a4 || | 1ow ||| ‘|;' | Y
amplitudes. This characteristic is sometimes deedrias low- L s i s
dynannc_range . frequency offset [hins] frequency offset |hins]

30— 1

At the other extreme of dynamic range are the wivglo Wk _w
with the poorest resolution. These high-dynamigeatow- T 8.
resolution windows are also poorest in terms ofsiisity; i fia £
this is, if the input waveform contains random Bo@ose to LR i ™ b4 _
the frequency of a sinusoid, the response to no@mapared to bl B 3" .
the sinusoid, will be higher than with a higheraiesion M ¢ 0w 00 M0 %0 e 70 % %0
window. In other words, the ability to find weaknssoids T B ol
amidst the noise is diminished by a high-dynamigesa Figure 4: Rectangular window
window. High-dynamic-range windows are probably mos
often justified in wideband applications, where #pgectrum NENBW = 1:0000 bins
being analyzed is expected to contain many difieren W3 dB = 0:8845 bins
components of various amplitudes. emax = -3:9224 dB = -36:3380%

In between the extremes are moderate windows, asch The first zero is located at f = £1:00 bins. Thghast side
Hamming and Hann. They are commonly used in naramaib lobe is -13:3 dB, located at f = +1:43 bins. Theesiobes drop
applications, such as the spectrum of a telephbaerel. In at a rate of f-1. Over lapping makes no sense @ t
summary, spectral analysis involves a trade-offween Rectangular window. While W3 dB is the narrowestatif
resolving comparable strength components with aimil windows, emax and the spectral leakage are thetwebrall
frequencies and resolving disparate strength cosmsrwith ~ windows considered here.
dissimilar frequencies. That trade off occurs wh@window B. Fast Fourier Transform
function is chosen. When the input waveform is tisaenpled, A fast Fourier transform (FFT) is an algorithm tmpute
instead of continuous, the analysis is usually donapplying the discrete Fourier transform (DFT) and its ineeiBhere are
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many different FFT algorithms involving a wide rangf
mathematics, from simple complex-number arithmetiic
group theory and number theory; below we gives\@amaew
of the available techniques and some of their gdne
properties, while the specific algorithms are diésct in
subsidiary articles linked below.

The DFT is obtained by decomposing a sequence
values into components of different frequencies.isTh
operation is useful in many fields but computingditectly
from the definition is often too slow to be praeaticAn FFT is
a way to compute the same result more quickly: agmg the
DFT of N points in the naive way, using the defomt takes
O(N2) arithmetical operations (O only denotes arpaup
bound), while an FFT can compute the same DFT in O(N
log N) operations. The difference in speed canuisstsintial,
especially for long data sets where N may be inttloeisands
or millions. In practice, the computation time da& reduced
by several orders of magnitude in such cases, d&med
improvement is roughly proportional to N/log(N). i¥thuge
improvement made the calculation of the DFT prattiEFTs
are of great importance to a wide variety of aglans, from
digital signal processing and solving partial dietial
equations to algorithms for quick multiplication ddrge
integers.

An FFT computes the DFT and produces exactly theesa
result as evaluating the DFT definition directhhiet only
difference is that an FFT is much faster.

Let x0, ...., xN-1 be complex numbers. The DFT i
defined by the formula

NL ok
X, =) xe N
n=0
Evaluating this definition directly requires O(N@perations:
there are N outputs Xk, and each output requirssna of N
terms. An FFT is any method to compute the samelteem
O(N log N) operations. More precisely, all known TFF

algorithms require O(N log N) operations, althotlére is no
known proof that a lower complexity score is impbles

k=0,..,N-1

To illustrate the savings of an FFT, consider thent of
complex multiplications and additions. Evaluatifg tDFT's
sums directly involves N2 complex multiplicationsda
N(N-1) complex additions [of which O(N) operatiocan be
saved by eliminating trivial operations such astiplitations
by 1]. The well-known radix-2 Cooley—Tukey algonthfor N

The Cooley—-Tukey algorithm is the most common fast
Fourier transform (FFT) algorithm. It re-expres#es discrete
Fourier transform (DFT) of an arbitrary compositeesN =

rNIN2 in terms of smaller DFTs of sizes N1 and N2,
recursively, in order to reduce the computationetia O(N
log N) for highly-composite N (smooth numbers).

of Radix-2 decimation-in-time (DIT) FFT is the simplesd

most common form of the Cooley-Tukey algorithm. Rad

DIT divides a DFT of size N into two interleaved Td-(hence
the name "radix-2") of size N/2 with each recursitege. The
discrete Fourier transform (DFT) is defined by thienula:

—nk

X, erN

Where is an integer ranging from 0 to N-1.
t Radix-2 DIT first computes the DFTs of the evenexed
inputs x2m (x1, x2 xN-2) and of the odd-indexéuaputs
x2m+1 (x1, x3 XxN-2) , and then combines those tesults
to produce the DFT of the whole sequence. This aeathen
be performed recursively to reduce the overallimmatto O (N
log N). This simplified form assumes that N is aveo of two;
since the number of sample points N can usuallychiEsen
freely by the application, this is often not an onjant
restriction.

S  The Radix-2 DIT algorithm rearranges the DFT of the
function xn into two parts: a sum over the even-berad
indices n=2m and a sum over the odd-numbered iadice
n=2m+1:

N/2-1

szzxz

m=0

—(Zm)k N/2-1 —n(2m+1)k

+ X

2m+l
m=0

One can factor a common multiplier  out of the
second sum, as shown in the equation below. lés tlear
that the two sums are the DFT of the even-indexad x2m
and the DFT of odd-indexed part of the functioBenote the
DFT of the Even-indexed inputs by and the DFthe odd-
indexed inputs by and we obtain:

Nj2-1 s

— Fmk
D e V"
m=0

N —
DFT of even—indexed part of z,,

Nf-1
2mi
— A mik
Z Toymyr€ M
m=0

—_—
DFT of add—indexed part of 2m

9y, 2wy
X, = e TF =B, +e TFO,.

a power of 2, can compute the same result with only

(N/2)log2(N)  complex  multiplies (again, ignoring
simplifications of multiplications by 1 and simi)arand
Nlog2(N) complex additions.

In practice, actual performance on modern computers
usually dominated by factors other than the spéedithmetic
operations and the analysis is a complicated sybjet the
overall improvement from O(N2) to O(N log N) remsiin

Algorithms used for FFT

However, these smaller DFTs have a length of N/2,
so we need compute only N/2 outputs: thanks to the
periodicity properties of the DFT, the outputs for

N /2<k <N from a DFT of length N/2 are identical to the
outputs for . That isE,,y,, =E, andQ,,y,, =0, . The

phase factoexp[-27ik/ N] (called a twiddle factor) obeys

the relation:
expl27i(k + N/2)/ N] =e " exp[-27ik / N

exp[-27ik/ N]
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flipping the sign of the terms. Thus, the wholETDcan be

calculated as follows:
E.+e FH0, if k< N/2
X, = _
Binpn— e RENDO o if k> NJ2.

This result, expressing the DFT of length N reaualsi in
terms of two DFTs of size N/2, is the core of thdix-2 DIT
fast Fourier transform. The algorithm gains itsespéy re-
using the results of intermediate computations eonpute
multiple DFT outputs. Note that final outputs atg#ained by
a +/- combination of and , which is simply aesiz DFT
(sometimes called a butterfly in this context); whihis is
generalized to larger radices below, the size-2 BHEplaced
by a larger DFT (which itself can be evaluated waithFFT).

C. Power spectral density

For continued signals that describe, for examplatianary
physical processes, it makes more sense to defipeweer
spectral density (PSD), which describes how the guosf a
signal or time series is distributed over the dédfe
frequencies. Here, power can be the actual phypmakr, or
more often, for convenience with abstract signa@n be
defined as the squared value of the signal. dted power P
of a signal is the following time average:

N 2

P=Ilim—| x(t)"dt
Toow 2T J-T
In analyzing the frequency content of the signabne

might like to compute the ordinary Fourier transfor ;
however, for many signals of interest this Fouti@nsform
does not exist. Because of this, it is advantagémwsork with
a truncated Fourier transform, where the signahtisgrated
only over a finite interval [0, TJ:

~ - 1 T —iVVt
% (W) =7 jo x(t)e ™ dt
Then the power spectral density can be defined as:
S (W) = lim E[| % (w) ']
Here E denotes the expected value; explicitly, axeh
Ell % W)[2] = E[%ix* (t)e‘w'dt:[ x(t')e'w‘dt} :%li EIX (Ox(t)e" et dit

Using such formal reasoning, one may already gtrests
for a stationary random process, the power spedeakity
and the autocorrelation function of this signal

Yy =< X(OX(t+T) >

should be a Fourier transform pair. Provided thais
absolutely integrable, which is not always truenth

SeW) = [ yrye™dlt = pw)

The power of the signal in a given frequency bandan
be calculated by integrating over positive and tigga
frequencies,

[ 8. (W) +S, (~wydw = F (w,) - F (-w,)

Where Fis the integrated spectrum whose derivasvidore
generally, similar techniques may be used to estimaime-
varying spectral density. The definition of the movepectral
density generalizes in a straightforward manndimite time-
series  withhl<N< N , such as a signal sampled at discrete

times for a total measurement peridd= NAt .

N 2
zxne—Zn
n=1

In a real-world application, one would typically exage
this single-measurement PSD over several repetitathe
measurement to obtain a more accurate estimatehef t
theoretical PSD of the physical process underlyithg
individual measurements. This computed PSD is somast
called periodogram. If two signals both possessgu@pectral
densities, then a cross-spectral density can beuleééd by
using their cross-correlation function.

- (@)
Sxx(W) - T

Properties of the power spectral density

Some properties of the PSD include:

* The spectrum of a real valued process is an even
function of frequency:

S (=W) = S, (W)
e If the process is continuous and purely
indeterministic, the autocovariance function can be

reconstructed by using the Inverse Fourier tramsfor
The integrated spectrum or power spectral distidbutis
defined as

FwW) =" S, (w)dw

IV. RESULTS

The input to the cognitive radio is the random alghat
we generate using random variables and the inpudora

rrrrrr . O e

mmmmmmmmm

“HU‘” H\ w‘\ ‘ N

Tins(s)

Figure 5: input random signal to the receiver
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The output is a set of vectors that show the akikel
channels that can be used for transmission of astaell as
reception of data. The cognitive radio will charigereception
as well as transmission parameters according t@avhadable
channels. The available channels are shown indigur

Braues = . 1 T (D i)
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ -
D& W L3 DEL- 2 0B a
<
FFFFFFFFFFFFF
Figure 6: available channels
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Figure8: Plot of Decision Variable VS Frequency
V. ADVANTAGES AND DISADVANTAGES
Advantages:

Effective to detect signals at low Signal to Naiato
(SNR)

Efficient Bandwidth (BW) use

Less complexity

Low power consumption

Friendly to Hardware Implementation
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Limitations

Although energy detection based FAR algorithm how |
computational and implementation complexities, sit quite
sensitive to noise uncertainty. Also the Sensimgetitaken
may be high

VI. CONCLUSIONAND FUTUREWORK

Spectrum is a very valuable resource in wireless
communication systems and it has been a majornaséapic
from last several decades. Cognitive radio is amsing
technology which enables spectrum sensing for dppistic
spectrum usage by providing a means for the usehite
spaces. Considering the challenges raised by cegmadios,
the use of spectrum sensing method appears asialanaed
to achieve satisfactory results in terms of effitieise of
available spectrum and limited interference with tltensed
primary users. As described in this report, theettgument of
the cognitive radio network requires the involvememd
interaction of many advanced techniques, includiistributed
spectrum sensing, interference management, cognitidio
reconfiguration management, and cooperative
communications.

Furthermore, in order to fully realize the CR systen
wireless communications for efficient utilizatioh scarce RF
spectrum, the method used in identifying the imenfice
and/or spectrum sensing should be reliable and ptrem that
the primary user will not suffer from CR systenutdize their
licensed spectrum. We presented the different &igna
processing methods by grouping them into threecbgisiups
and their details in turn. We have also preserttedptos and
cons of different spectrum sensing methods, anébpeed
the comparison in terms of operation, accuraciesyplexities
and implementations. There exist number of isswedéd
addressed in terms of primary signal detection tineedware
requirements and computational complexities. FAGo@athm
for spectrum sensing has been proposed and seleftiio
major parameters of FAR algorithm has been disclids&R
algorithm is designed to compromise between thiopaance
and implementation complexity. In particular, FARa@&ithm
has a constant threshold feature which is greatlfavor of
blind sensing.

In future | would like to go for real time spectrisansing
for cognitive radio using FPGA'’s and also try tonmiize the
disadvantages by enhancing the algorithm.

REFERENCES
[1]. Zhe Chen, Nan Guo, and Robert C. Qiu “DemonstratioReal-time
Spectrum Sensing for Cognitive Radio,” in MILITARY
COMMUNICATIONS CONFERENCE, 2010 - MILCOM 2010
Sheryl Ball, Adam Ferguson , Thomas W. Rondeau %0orer
Applications of Cognitive Radio Defined Networks”.
S. Haykin, D. Thomson, and J. Reed, “Spectrum sgrfsir Cognitive

radio,” Proceedings of the |IEEE, vol. 97, no. 5, gg9-877, May
2009.

[2].
(31



International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1sdue 7, July 2014)

[4]. T. Yucek and H. Arslan, “A survey of spectrum sagsalgorithms for
cognitive radio applications,” IEEE Communicatior8urveys &
Tutorials, vol. 11, no. 1, pp. 116-130, March 2009.

[5]. J. Proakis and D. Manolakis, Digital signal prodess principles,
algorithms, and applications, 4th ed. Prentice,28106.

[6]. Mansi Subhedar and Gajanan Birajdar (2011);“spettrsensing
techniques in cognitive radio networks” Internaéibdournal of Next-
Generation Networks (IJINGN) Vol.3, No.2, June 2011.

About Authors:

Shreeya Kadgudborn on April 9, 1990
in Gulbarga, India. She is perusing
masters in Digital Electronics at APPA
IET Gulbarga, India. she completed her
B.E in Instrumentation technology at
Poojya Doddappa Appa Institute of
Engineering Gulbarga, India.

Her interested field is digital electronics
and Instrumentation technology.

Abhinaya Dattaprasad Padakiborn on September 27, 1991
in Gulbarga, India. She is perusing masters in tBigi
Electronics at APPA IET Gulbarga, India. She cornguleher
B.E at BLDEA'S Associations P. G. Halakatti collegé
Engineering and Technology, Bijapur, India.

Her interested field is digital electronics.

110



