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Abstract: The human brain is a daunting goal for biologists and 
engineers alike. Our brain takes several years to fully develop, 
and contains between 1010 and 1011 neurons (nerve cells), each 
communicating with 103 other cells, on average. Brains of other 
animals (particularly invertebrates) are much smaller but still 
perform remarkably complex computations. Insect brains, for 
example, typically contain between 105 and 10® neurons. As we 
shall see in the following chapter, insects perform sophisticated 
information-processing tasks rapidly and efficiently. In this body 
of work, we have attempted to extract computational principles 
from the visual system of the fly and apply these principles to an 
engineered system—an integrated, low-power visual motion 
sensor. As our engineering tool we use very-large scale 
integration (VLSI) of silicon circuits—the most advanced 
information-processing substrate available today. In particular, 
we explore continuous-time (un clocked), continuous-value 
(analog) circuit architectures. 
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1. SENSORY SYSTEMS OF THE FLY 
 
The fly is an attractive target for biologically-inspired 
approaches to engineering. Its brain and sensory systems have 
been studied for decades, so much is known about their 
operation. Of course, we are still decades (or centuries) away 
from understanding the entire system, but a wealth of 
behavioral and electrophysiological data has led to the 
development of several models of information processing. 

Flies possess a diverse array of organs for sensing their 
environment. In addition to the familiar sense of vision, flies 
employ Coriolis-force “gyroscopes,” polarized light sensors, 
and body proprioception to aid in navigation. In this chapter, 
we will discuss these sensory systems. 
 
The Visual System of the Fly 
Vision is a vitally important sense for flying insects. This 
information processing begins at the sensor—the retina. 
Despite the multi-lens construction of the compound eye, the 
pattern projected onto the underlying retina is a single image 
of the visual scene. Photoreceptors in the retina adapt to the 
ambient light level, and signal temporal deviations from this 
level. These signals are passed on to the next layer of cells, the 
lamina. Lamina cells generally show transient or highpass 
responses, emphasizing temporal change (Weckstrom et ah, 
1992). The next stage of processing is the medulla, a layer of 
cells that are extremely difficult to study directly due to their 

small size. Indirect evidence suggests that local measures of 
motion (i.e., between adjacent photoreceptors) are computed 
here. These are the best-studied cells in the fly visual system, 
and much is known about their properties. 
 
The Vestibular Sense 
Dipterans (true flies and mosquitos) possess a remarkable 
evolutionary specialization for measuring angular velocity. 
The hind wings of these animals evolved from flight surfaces 
into dedicated angular rate “gyroscopes.” These halteres, as 
they are called, resemble small balls at the end of sticks (see 
Figure). The halteres beat up and down antiphase to the wings 
at the wingbeat frequency (about 150 Hz in CaMiphora;  
over 200 Hz in the smaller Drosoph ila ). They move at 
nearly constant velocity during each upstroke and downstroke, 
covering nearly 180° (Nalbach, 1993). 

While body rotations produce centrifugal forces on the 
halteres, these forces are oriented radially and tangentially, 
and for typical maneuvers are several orders of magnitude 
smaller than the radial centrifugal forces due to halteres 
oscillation. Centrifugal forces are proportional to the square of 
angular velocity and thus provide no information on the 
direction of rotation. A more useful signal is the Coriolis 
force, which is proportional to the cross product of the 
instantaneous haltere velocity and the axis of body rotation. 
Coriolis forces acting normal to the plane of haltere oscillation 
are detected by about 335 campaniform sensilla organized in 
five groups at the haltere base. These sensory cells are 
embedded in the flexible exoskeleton, and act as strain gauges. 

By integrating Coriolis force information over the 
haltere’s 180° sweep, and by combining signals from the two 
non-coplanar halteres, the fly can measure angular rotation 
about all three axes. Vestibular information from the halteres 
system is critical for maintaining stable flight; when a fly’s 
halteres are removed it quickly falls to the ground. (With only 
one haltere removed, flight is still possible.) 

Free flight seems to be controlled by a combination of 
visual and vestibular sensors. Little is known about the 
interactions between these two sensory modalities. Recent 
experiments by Dickinson and colleagues have shown that 
visual interneurons stimulate small haltere control muscles 
that exert force in the same direction as Coriolis forces (Chan 
et ah, 1998). They propose a model where the halteres control 
flight equilibrium in a fast feedback loop and the slower visual 
interneurons steer the animal by tugging on the halteres to 
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create a vestibular illusion. 
 
Ocelli 
In addition to the two compound eyes, flies have three other 
photosensitive organs called ocelli. These sensors are located 
between the eyes on the dorsal region of the head. Each 
ocellus consists of a single circular lens approximately 75 pm 
in diameter which focuses light onto a low-resolution retina 
containing approximately 220 photoreceptors. The image 
produced on the retina is a wide- angle, underfocused view of 
the surroundings above and lateral to the fly. There is rapid 
convergence of the photoreceptors onto 4-6 interneurons that 
seem to measure mean brightness. 

The ocelli seem to contribute to the dorsal  l igh t  
response  observed behaviorally, where flies align the top of 
their head with the center of brightness (Schuppe and 
Hengstenberg, 1993). This often corresponds with the zenith 
in outdoor environments. Dragonflies appear to use their ocelli 
as horizon detectors to provide information on their head 
attitude relative to the ground (Stange, 1981). The ocelli seem 
to work in concert with the compound eyes to position the 
head. 

 

 
Figure 1: The halteres of the blowfly Ca l l i ph ora .   

 
The halteres evolved from hindwings but no longer serve any 
aerodynamic function. Located in the “waist” between the 
thorax and the abdomen, these devices beat up and down (i.e.. 
in and out of the plane of the page) antiphase to the wings. 
Groups of mechanoreceptors at the base measure Coriolis 
forces produces by the angular rotation of the animal. Adapted 
from Nalbach, 1993. 
Polarized Light Detection 
The dorsal regions of insect eyes contain polarization-
sensitive photoreceptors. Bees and desert ants have been 
shown to use skylight polarization patterns as a compass and 
can infer their heading even when the sun and much of the sky 
is obscured by clouds. These specialized photoreceptors are 

most sensitive to ultraviolet light, which is more scattered and 
polarized by the atmosphere than longer-wavelength “visible” 
light (Welmer. 1987). Polarization-sensitive cells have been 
found in flies (Wolf et ah. 1980). though polarization-sensitive 
behaviors have not been investigated in detail. 
 
Linear Acceleration 
Presumably, flying insects can also detect linear acceleration. 
While there are no known organs dedicated to this sense, the 
legs and neck of the fly are equipped with proprioceptive 
sensors that measure both position and strain. Presumably, 
flies can sense the inertia of their head and limbs and infer 
acceleration. 

In the remainder of this dissertation, we will focus 
primarily on visual motion sensing. Visual motion perception 
underlies many interesting behaviors in the fly and could be 
applied to useful engineering applications. The following 
chapter introduces motion detection algorithms, including the 
model commonly used to explain early vision in the fly. 

In Chapter 9, we will revisit vestibular sensing and discuss 
how Coriolis-force sensors might be integrated with visual 
motion sensors 

 
2. MOTION DETECTION - ALGORITHMS AND 

VLSI IMPLEMENTATION 
 

During the past 15 years, many analog, digital, and hybrid 
VLSI motion sensors have been developed and tested. Most of 
these designs incorporate photodetection and motion 
computation on the same chip. These focal-plane processors 
typically cannot achieve the high pixel density of dedicated 
CMOS imagers or CCDs, but rather trade off density for 
functionality. By extracting motion information at the level of 
light detection instead of using an external microprocessor, 
large savings in size, power, and system complexity is 
achieved. 

Nearly every motion detection algorithm devised has been 
implemented in VLSI in some form. Motion detection 
algorithms can be divided into two broad classes: f eature-
tracking  or token-based algorithms, and in tensi ty-
based  algorithms. Models of motion detection in the fly 
represent a special case of intensity-based algorithms. In this 
chapter, we will review the principles of motion detection 
commonly used in both hardware implementations and 
biological models. 
 
Feature-Based Motion Detection 
Algorithms of this type use feature detectors to identify salient 
points in the raw image. Binary- tokens indicating the absence 
or presence of a feature are then passed on to a velocity-
estimation stage. Two types of feature detectors have been 
used in silicon motion sensors: spatial feature detectors and 
temporal feature detectors 
 

3. VLSI REIEHARDT DETECTOR DESIGN 
 

We developed two distinct circuit architectures for VLSI 
Reiehardt motion detectors. Both circuits operate in 
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continuous time with analog signals, and incorporate light 
sensing and information processing on the same chip. The first 
circuit described is largely a curren t-mode  design. That is, 
signals are represented as currents throughout the majority of 
the circuit. The second circuits is called the vo ltage-mode  
design since signals are represented a voltages, although the 
final output is produced as a current. Both circuits make use of 
the weak-inversion, or subthreshold region of operation of the 
AI OS transistor for micropower operation. 
 
Current-Mode Design 
Each elementary motion detector (EMD) uses photodiodes as 
light sensors. We use a four-transistor adaptive photoreceptor 
circuit developed by Delbriick (Delbriick and Mead, 1996) 
that produces a continuous-time output voltage proportional to 
the logarithm of light intensity. This circuit has a temporal 
lowpass characteristic with a cutoff frequency that can be set 
with a bias voltage. The photoreceptor is connected to a 
temporal derivative circuit (Mead, 1989), which has a 
highpass behavior. Transient firing, characteristic of a 
temporal highpass response, has been observed in fly laminar 
cells that receive input from retinal photoreceptors 
(Weckstrom et ah, 1992). Together, the lowpass filtering of 
the photoreceptor and the highpass filtering of the temporal 
derivative circuit form a bandpass filter which improves 
performance by eliminating dc illumination (which contains 
no motion information), and attenuating high-frequency noise 
such as the 120 Hz flicker of ac incandescent lighting. These 
bandpass filters were set to attenuate frequencies below 
2.8 Hz and above 10 Hz. 

The temporal derivative circuit relies on a high-gain 
differential amplifier in a negative feedback configuration to 
keep the voltage on the capacitor equal to the input voltage. 
As the capacitor charges and discharges to maintain this 
equality, the currents through the two source follower 
transistors (labeled “sf” in Figure) may be measured. The 
outputs of the temporal derivative circuit are these two 
unidirectional currents, which are proportional to the positive 
and negative components. This two-channel representation is 
useful for current-mode circuits, since the following 
translinear circuits work only with unidirectional currents. It 
should be noted that the use of ON and OFF channels 
introduces nonlinearities into the circuit that are not accounted 
for in the simple model described in Chapter 3. 

We use the phase lag inherent in a first-order lowpass 
filter as a time delay. The currents from the temporal 
derivative circuit are passed to current-mode first-order 
lowpass filter circuits (Himmelbauer, 1996). These are log-
domain filters that take advantage of the exponential behavior 
of field-effect transistors (FETs) in the subthreshold (weak 
inversion) region of operation. Note that two filters are needed 
for each EMD—one for the ON channel, and one for the OFF 
channel, which are processed in parallel. The time constant of 
the filters is controlled with a bias current that can be set 
externally. This time constant can be changed to tune the 
EMD to a specific optimal temporal frequency. We fixed this 
time constant to 40 ms, which gave our chip a maximum 
temporal frequency sensitivity of 4 Hz, similar to motion-

sensitive neurons in flies (O’Carroll et ah, 1996). 
To correlate the delayed and non-delayed signals for 

motion computation, we use a current-mode multiplier circuit. 
This circuit also takes advantage of the exponential behavior 
of subthreshold FETs to perform a computation. The weighted 
sum of these voltages is computed with the capacitive divider 
on the floating gate of the output transistor, and this transistor 
exponentiates the summed voltages into the output current, 
completing the multiplication. Any trapped charge remaining 
on the floating gates from fabrication is eliminated by 
exposing the chip to ultraviolet light, which imparts sufficient 
energy to the trapped electrons to allow passage through the 
surrounding insulator. This circuit represents one of a family 
of floating-gate MOS translinear circuits developed by Minch 
that are capable of computing arbitrary power laws with 
current-mode signals (Minch et ah, 1996b). 

After the multiplication stage, the currents from the ON 
and OFF channels are summed, and the final subtraction of the 
left and right channels was done off-chip. Due to transistor 
mismatch, there was a gain error of approximately 2.5 
between the left and right channels that was compensated for 
manually. It is interesting to note that there is no significant 
offset error in the output currents from each channel. This is a 
consequence of using translinear circuits which typically have 
gain errors due to transistor mismatch, but no fixed offset 
errors. 

One entire EMD (left and right channels) consists of 31 
transistors and 25 capacitors with 8.0 pF of total capacitance. 
Most of the capacitors were small devices (8 pm x 8 pm or 
less) associated with the floating-gate multiplier circuits. Each 
EMD takes 0.044 mm2 of silicon area in a 2.0-pm CMOS 
process, including the integrated photoreceptors. By operating 
most of the transistors in the subthreshold regime, we achieve 
extremely low power dissipation (approximately 7.5 pW per 
elementary motion detector). 

We built a simple model of the HS cell by constructing a 
one-dimensional array of 13 complete EMDs and linearly 
summing their outputs. This is easily achieved due to the 
current-mode nature of the EMD output signals; we simply tie 
all the wires together. 
 
Voltage-Mode Design 
Our voltage-mode version of the Reichardt motion detector 
offers several advantages over the currentmode design, 
including superior matching characteristics and reduced 
contrast dependence. To the best of our knowledge, this is the 
closest approximation to this biological motion sensor that has 
been built. 
 
Circuit Architecture 
As in the current-mode design, we measure light intensity 
with an adaptive photoreceptor circuit developed by Delbriick 
and Mead (Delbriick and Mead, 1996). This four-transistor 
circuit uses a substrate photodiode and source follower (Mi) to 
convert incident light into a logarithmically encoded voltage. 
A high gain amplifier (M2 and M3) and feedback network (Ci  
and C2) amplify the voltage signal by a factor of 18. The 
adaptive element (M4) acts as a nonlinear feedback element 
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that conducts only if the voltage across it exceeds several 
hundred millivolts. This allows the photoreceptor to adapt to 
large changes in illumination. Thus we maintain a large 
dynamic range over a wide operating range. At low bias 
current levels, the bandwidth of the photoreceptor is limited 
by the parasitic output capacitance C p .  For a detailed 
discussion of this circuit, see (Delbriick and Mead, 1996). 

The adaptive photoreceptor signal is sent to a gm C  
highpass filter. We use a source follower to provide a low-
impedance driver, but in future designs we will leave this out 
and compensate for the increased output capacitance by 
increasing the photoreceptor bias current I p r .  We use a 
highpass filter for two reasons. First, the ac coupling 
eliminates any systematic offsets caused by device variation in 
the adaptive photoreceptor. Second, by fixing the dc 
component of the signal to V a ,  we can eliminate any 
common-mode effects later in the circuit. 

The delay is accomplished with a first-order gmC  lowpass 
filter. The bias transistor in the circuit was made several times 
minimum size to improve time constant matching across the 
chip. By operating this circuit at low current levels, we can 
achieve time constants useful for motion detection (10-100 
ms) with reasonably sized capacitors (on the order of 1 pF). 
 

4. VLSI MOTION DETECTOR 
CHARACTERIZATION 

 
The voltage-mode elementary motion detectors described in 
the previous chapter demonstrated superior matching 
characteristics for similar pixel sizes. In this chapter, we 
characterize in detail the behavior of the voltage-mode EMD 
to both simple and complex visual stimuli. 
 
Methodology 
All of the experiments in this chapter were carried out on a 1 
x 22 array of motion sensors fabricated on a 2.2 mm x 2.2 mm 
die in a standard 1.2 pm CMOS process. A 2.6 mm focal 
length lens was mounted directly over the chip, giving a 35° 
field of view across the entire array. The angle 4>  between 
adjacent photoreceptors was 1.5°, comparable to the eyes of 
many flying insects (Land, 1997). The chip was biased to an 
appropriate operating range, and the bias settings were 
unchanged during all experiments, except where explicitly 
stated. 

For experiments involving spatial integration over many 
sensors, the individual output currents were summed on two 
wires, one for the rightward-facing half-receptors (i.e., the toi 
signal in Figure), and one for the leftward-facing half-
receptors (i.e., the m2  signal in Figure). The currents were 
measured with off-chip sense amplifiers. The two opponent 
signals were subtracted to yield a direction selective response. 

We presented computer-generated visual stimuli on a 
standard monitor (Sony Multiscan 17se II) with a refresh rate 
of 72 Hz. Our software was able to update the screen at 
approximately the same rate. The bandwidth of the adaptive 
photoreceptors was set sufficiently low to attenuate screen 
refresh artifacts by 20 dB. This also prevented the 
photoreceptors from responding to the 120 Hz signal in ac 

incandescent lighting. 
We generated visual stimuli with spatial resolution far 

exceeding the motion sensor array resolution. We used a 64-
value gray scale to generate sinusoidal gratings and other 
complex stimuli of varying contrasts. 
 
Direction Selectivity 
Figure shows the output of a single Reichardt motion sensor 
and the summed output of the 22-element sensor array in 
response to a sinusoidal grating drifting along the sensor axis. 
The sensorChip testing methodology. We mounted a lens 
directly over the chip to focus an image on the photoreceptor 
array. Moving patterns were generated on a standard computer 
monitor. The temporal bandpass filters in each EMD blocked 
the 72 Hz refresh rate signal from the monitor. 
array is highly direction selective, giving responses of 
opposite sign to motion in opposite directions. The individual 
sensor shows a high degree of pattern dependence 
superimposed on a dc direction selective response. Much of 
this pattern dependence is caused by device mismatch in the 
Gilbert multiplier. If the differential pairs are not perfectly 
matched, the output contains components of the raw input 
signals. 

Pattern dependence is greatly reduced by spatially 
integrating over a small group of motion sensors that see 
different phases of the stimulus. Pattern dependence has also 
been observed in motion-sensitive cells in flying insects, 
where it is also reduced by spatial integration (Reinhardt and 
Egelhaaf. 1988; Single and Borst. 1998). In principle, pattern 
dependence could also be removed through temporal 
integration (averaging over time), but this would limit the 
response time of the sensor. We chose spatial integration, 
which sacrifices resolution, but maintains temporal bandwidth. 
The transients observed at the onset of motion are also 
observed in biological motion-sensitive cells and have been 
shown to be a consequence of summing many EMDs which 
see different phases of a periodic stimulus (Egelhaaf and 
Borst. 1989). 
 
Spatiotemporal Frequency Tuning 
Next, we varied the temporal and spatial frequencies of the 
sinusoidal gratings. Figures show the mean response of the 
sensor array, as well as the standard deviation of the signal 
over ten temporal cycles of the stimulus. The error bars give 
an indication of the magnitude of residual pattern dependence. 
Noise levels were far below the deterministic pattern-
dependent fluctuations observed. Theoretical fits are plotted as 
dashed lines. These fits use Equation, including parameters 
from 
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Figure 2: Motion offset: Rightward motion.
 
Chip output is plotted against Equation 5.33 for 
and r = 80 ms. Only the scaling constant was varied to fit the 
data. The first-order temporal lowpass behavior of the 
adaptive photoreceptor (Tpu 0 to  = 30 ms) and the first
temporal highpass filter that follows (tr = 200 ms).

The same parameters were used for all fits in Figures: r = 
80 ms, <f> =  1.5°, and a fixed constant of proportionality. 
The circuit behaves as a Reichardt motion detector ove
wide range of spatial and temporal frequencies. Similar 
temporal frequency tuning is observed in the motion
lobular plate neurons of flies. 

Spatial aliasing should produce response reversals at 
N/2<j>,  where N =  1,2,3, Indeed, the first rever
seen near f s  =  1/2<j>  « 0.33 cpd. This reversal is also 
observed in flies, and has been used to measure their 
interommatidial angle <j>  (Gotz, 1965). The effect of 
aliasing at higher spatial frequencies is reduced by the finite 
photoreceptor size as well as by slightly defocused optics. 
Both effects attenuate at high spatial frequencies.

 
Contrast Dependence 
One of the biggest disadvantages of the Reichardt motion 
detector is its strong (quadratic) dependence on contrast. This 
not only confounds contrast with spatiotemporal frequencies 
in the response, it also greatly amplifies the effect of high
contrast features, while attenuating low-
Studies of natural scenes have shown that low cont
much more common (Ruderman and Bialek, 1994), so we do 
not want them to be underrepresented by a motion sensor. 
Interpixel Variation 
As discussed in Chapter 4, good interpixel matching is 
essential before large arrays of local motion sensors will be 
feasible. We measured the matching characteristics of our 
motion sensors across the 22-sensor 1-D array that spanned 
1.3 mm. We used a sinusoidal grating of fixed spatial 
frequency, and measured the mean response of each sensor in 
the array as we varied its velocity from —200
deg/s. Figure shows the mean and standard deviations of the 
22 responses measured across the chip. The r
deviation to maximum mean response varied between 0.10 
and 0.25, depending on the temporal frequency. The 
individual sensors perform similarly, indicating good 

 
 

 Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 9, Issue 7, July

 

11 

 
: Motion offset: Rightward motion. 

Chip output is plotted against Equation 5.33 for th  =  200 ms 
and r = 80 ms. Only the scaling constant was varied to fit the 

order temporal lowpass behavior of the 
= 30 ms) and the first-order 

= 200 ms). 
The same parameters were used for all fits in Figures: r = 

1.5°, and a fixed constant of proportionality. 
The circuit behaves as a Reichardt motion detector over a 
wide range of spatial and temporal frequencies. Similar 
temporal frequency tuning is observed in the motion-sensitive 

Spatial aliasing should produce response reversals at 
first reversal can be 

« 0.33 cpd. This reversal is also 
observed in flies, and has been used to measure their 

(Gotz, 1965). The effect of 
aliasing at higher spatial frequencies is reduced by the finite 

e as well as by slightly defocused optics. 
Both effects attenuate at high spatial frequencies. 

One of the biggest disadvantages of the Reichardt motion 
dence on contrast. This 

not only confounds contrast with spatiotemporal frequencies 
in the response, it also greatly amplifies the effect of high-

-contrast features. 
Studies of natural scenes have shown that low contrasts are 
much more common (Ruderman and Bialek, 1994), so we do 
not want them to be underrepresented by a motion sensor.  

As discussed in Chapter 4, good interpixel matching is 
essential before large arrays of local motion sensors will be 
feasible. We measured the matching characteristics of our 

D array that spanned 
soidal grating of fixed spatial 

frequency, and measured the mean response of each sensor in 
200 deg/s to +200 

deg/s. Figure shows the mean and standard deviations of the 
22 responses measured across the chip. The ratio of standard 
deviation to maximum mean response varied between 0.10 
and 0.25, depending on the temporal frequency. The 
individual sensors perform similarly, indicating good 

matching of gains, dc levels, and time constants.
 

Figure 3: Temporal frequency sensitivity of the Reichardt detector array

In this figure and in those following, error bars show one 
standard deviation of the time response computed over 
stimulus periods, and represent residual deterministic pattern 
dependence such as that seen in Figure. Noise levels were 
small by comparison. Dashed lines show fits to Equation 
 
Response to Naturalistic Stimuli
While useful for initial evaluations, sinus
simple artificial stimuli that a creature is rather unlikely to 
encounter while navigating through the real world. (We have 
also repeated the above experiments with square
gratings, and the results are very similar.) We would like t
characterize the performance of our sensor with real
stimuli to test its robustness in the face of more complex 
visual scenes. 

One of the difficulties in measuring “real
robustness” is that complex stimuli may be hard to define and 
standardize. If we use a “cluttered office environment” for a 
visual stimulus, how does another group in a different lab 
reproduce this stimulus to evaluate the relative robustness of 
their sensor? Of course the real world is always the ultimate 
acid test for robustness, but we propose a useful middle 
ground: generating random stimuli that conform to the 
statistics observed in the natural environment, and using these 
to test sensors. 

In the set of all possible images a computer monitor can 
display, the subset of these images that do not look like 
random noise is vanishingly small. It has been found that 
natural images exhibit a predictable statistical structure (Field. 
1987; Ruderman and Bialek. 1994; Dong and Atick. 1995). 
These statistics hold for images of natural 
made objects. Static natural scenes exhibit
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matching of gains, dc levels, and time constants. 

 
cy sensitivity of the Reichardt detector array  

 
In this figure and in those following, error bars show one 
standard deviation of the time response computed over 10 
stimulus periods, and represent residual deterministic pattern 
dependence such as that seen in Figure. Noise levels were 
small by comparison. Dashed lines show fits to Equation  

Response to Naturalistic Stimuli 
While useful for initial evaluations, sinusoidal gratings are 
simple artificial stimuli that a creature is rather unlikely to 
encounter while navigating through the real world. (We have 
also repeated the above experiments with square-wave 
gratings, and the results are very similar.) We would like to 
characterize the performance of our sensor with real-world 
stimuli to test its robustness in the face of more complex 

One of the difficulties in measuring “real-world 
robustness” is that complex stimuli may be hard to define and 

e. If we use a “cluttered office environment” for a 
visual stimulus, how does another group in a different lab 
reproduce this stimulus to evaluate the relative robustness of 
their sensor? Of course the real world is always the ultimate 

ness, but we propose a useful middle 
ground: generating random stimuli that conform to the 
statistics observed in the natural environment, and using these 

In the set of all possible images a computer monitor can 
e images that do not look like 

random noise is vanishingly small. It has been found that 
natural images exhibit a predictable statistical structure (Field. 
1987; Ruderman and Bialek. 1994; Dong and Atick. 1995). 
These statistics hold for images of natural as well as man-
made objects. Static natural scenes exhibit 
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Figure 4: Spatial frequency sensitivity of the Reichardt detector array  

 
In this figure and in those following, error bars show one 

standard deviation of the time response computed over 10 
stimulus periods, and represent residual deterministic pattern 
dependence such as that seen in Figure. Noise levels were 
small by comparison. Dashed lines show fits to Equation 3.19. 
Spatial aliasing is reduced by the finite photoreceptor size as 
well as by slightly defocused optics. 

 
Speed Tuning 
A common criticism of the Reichardt motion detector is that it 
is not a true speed sensor; even with contrast saturation, the 
output is dependent on the spatial frequency of the stimulus. 
Recently, a variation of the Reichardt motion detector has 
been proposed that greatly reduces the spatial frequency 
dependence and makes it more speed sensitive (Zanker et ah, 
1999). 

By using half motion detectors with no opponency, we 
achieve a more speed-tuned response. However, the lack of 
opponency reduces directional selectivity. Flying insects seem 
to use both systems: a highly directional, temporal frequency 
dependent optomotor system for stabilizing flight and a speed-
tuned, non-directional system for navigation (Srinivasan and 
Zhang, 1993; Srinivasan et ah, 1999). It remains unclear 
whether this second system uses a correlation-type of motion 
computation. 

 
Power Dissipation 
One entire Reichardt motion sensor consumes 50 nW of 
power at Vdd  = 2.5 V under normal indoor illumination of 10 
cd/m2. Photocurrent contributes significantly to overall power 
consumption. Under increased illumination of 2500 cd/m2, the 
power consumption increased to 110 nW. The circuit 
consumes approximately the same amount of power with or 
without motion present. This is the lowest power requirement 
of any motion sensor we are aware of. A 100 x 100 array of 2-
D Reichardt motion sensors would consume less than 1 mW. 
Results described in this chapter also were published in 
Harrison and Koch, 2000a 

5. STIMULUS RECONSTRUCTION 
 

In this chapter, we evaluate our sensor’s ability to encode 
information about the velocity of a simple stimulus. We also 
compare our sensor’s encoding ability with the encoding 
ability of the HS cell in the lobular plate of the blowfly 

Cal liphora  erythrocephala ,  which has been previously 
measured by other researchers. We replicated the experiments 
of Haag and Borst, 1997, which use s t imulus  
recons truct ion techniques  to measure encoding fidelity. 
We shall first describe the techniques and then discuss the 
experimental results. 
 
Stimulus Reconstruction Techniques 
One way of measuring how well a sensor encodes a stimulus 
is to determine how well we can reconstruct an unknown 
stimulus from the sensor’s response. The stimulus 
reconstruction technique used in the following experiments 
finds the linear filter that transforms the sensor response into 
an estimate of the stimulus that is optimal in the least-squares 
sense. That is, the reconstruction filter minimizes the square 
error between the estimate and the actual stimulus. This linear 
reconstruction represents a lower bound on encoding ability. 
Nonlinear filters could of course generate an estimate with a 
lower error, but we compare the sensor’s response variability 
under repeated experiments with identical stimulus conditions 
to generate an upper bound on encoding ability. A more 
detailed description of these techniques may be found in Borst 
and Theunissen, 1999. 

Suppose we stimulate a time-invariant system with a set of 
i  Gaussian stimuli s, (f) and record responses r^t ).  Given the 
frequency-domain representation of the stimuli Si (f )  and the 
responses Ri(f ),  the optimal reverse reconstruction filter is 
given by the average cross-correlation normalized by the 
average autocorrelation of the responses: that respond to 
horizontal motion in the visual held. These cells exhibit 
relatively symmetric hyperpolarization and depolarization on 
the order of ±10 mV to bidirectional motion. During stimulus 
presentation, which lasted 40 seconds, the intracellular 
potential was recorded using a sampling rate of 2 kHz. Each 
40-second stimulus and response [ s( t )  and r( t )]  was broken 
down into 4-second segments [s i ( t )  and ri ( t )] .  The 40-
second stimulus was presented multiple times as well. 

Using the cell’s response to the random velocity stimuli, a 
reverse reconstruction filter was calculated using Equation 6.1. 
This filter was used to generate the estimated stimulus 
sest ( t ) .  Figure shows a 600 ms excerpt of the stimulus with 
the estimated stimulus superimposed. Based on the linear 
reconstruction derived from the intracellular response, it is 
clear that the HS cell encodes slow changes in pattern 
velocity, but fails to encode rapid changes. 

This frequency-limited encoding can be quantified by 
computing the coherence function 72(/), as shown in Figure. A 
coherence of 1 indicates that the stimulus is reconstructed 
perfectly by the reverse reconstruction filter at a certain 
frequency. The coherence plot indicates that the cell encodes 
velocity fluctuation information up to approximately 10 Hz. 

There are two possible reasons for a coherence value less 
than one. First, there may be noise added to the signal in the 
cell. Second, the encoding may be nonlinear, which the linear 
reconstruction filter could not account for. We know from our 
analysis of Reichardt motion detectors in that models of the 
HS cell do not predict a linear encoding of velocity. In order to 
determine which effect (noise or nonlinear encoding), 
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dominates the loss of coherence. Haag and Borst estimated the 
noise independently.  
 
Pattern Velocity Estimation by Silicon EMD Array 
We repeated the above experiment using a silicon 1 x 13 
EMD array. The experiment was performed using the same 
experimental apparatus and control software as in the fly 
experiments. The current mode output of the chip was 
converted to a voltage by a sense amplifier, and this voltage 
was sampled at 2 kHz during stimulus presentation. 

Figure shows a segment of the stimulus and the estimation 
derived from the chip response. Comparing this with Figure 
we see that the chip performs similarly to the HS cell; it 
follows the stimulus at low frequencies, but misses high-
frequency information. The coherence function for the silicon 
system is displayed in Figure. along with the expected 
coherence function. Figure shows the signal and noise spectra 
for the chip. From this data, one can see that the relative noise 
level in our chip is several times lower than that in the fly’s 
HS cell. Most of the missing accuracy- in chip is due to coding 
nonlinearities, not noise. 

Figure overlays the measure coherence functions of the 
HS cell and the chip. The fly encodes velocity fluctuations in 
the 5 Hz to 20 Hz range with higher accuracy than our chip. 
We believe that parasitic capacitances in the current-mode 
lowpass filter begin introducing nonlinearities at these 
frequencies, resulting in a less accurate encoding. 

We used information-theoretic techniques to quantify 
upper and lower bounds on the mutual information encoded by 
the chip (Borst and Theunisseri, 1999). The lower bound and 
upper bound. 

 

 
Figure 5: Stimulus reconstruction in the silicon EMD array 

 
Using an upper frequency limit fmax of 50 Hz. the lower-

bound information rate of the chip was calculated to be 27 
bits/sec. compared with 37 bits/sec in the HS neuron using 
identical stimuli and upper frequency limit (Haag and Borst. 
1998). The channel capacity (upper bound) of our sensor was 
137 bits/sec compared with 110 bits/sec in the HS neuron. 
This is not surprising considering our chip dissipated many 
orders of magnitude more power than the fly’s visual system. 
The true measure of transinforniation probably lies closer to 
the lower bound. Our chip used far fewer EMDs than an HS 
neuron, and was thus subject to greater pattern dependence 
which obscured velocity information. Parasitic effects and 
second-order nonlinearities also prevented our sensor from 
encoding velocity information as efficiently as the fly’s HS 

neuron. 
 

6. OPTOMOTOR CONTROL 
 
In Chapter 2, we introduced the optomotor response, where 
visual motion information is used as a feedback control signal 
to estimate and cancel self-rotation. This sensorimotor loop is 
perhaps the best-studied visually-guided behavior of the fly. 
We will first describe optomotor experiments performed with 
flies and then describe real-time experiments where our sensor 
was compared directly against flies. 
 
Experiments Previously Performed on Flies 
Warzecha and Egelhaaf recently characterized the optomotor 
behavior of the fly under closed-loop conditions (Warzecha 
and Egelhaaf, 1996). A female sheepfly (Lucil ia  cuprina,  
Calliphoridae) was rigidly attached to a meter that measured 
yaw torque produced while the fly attempted to turn in 
response to visual stimuli, reducing the fly’s behavior to a 
single degree of freedom. Vertical bars were presented to a 
large region of the fly’s visual field, and could be drifted 
clockwise or counterclockwise. In closed-loop experiments, 
the fly’s yaw torque was measured in real time and scaled by a 
constant gain term to yield angular velocity. This simulates the 
observed dominance of air friction in determining the 
instantaneous angular velocity in flies (Reichardt and Poggio, 
1976). The fly’s simulated angular velocity was subtracted 
from the angular velocity imposed by the experimenter. The 
resulting signal was used to control the drift rate of the visual 
stimulus. This simulated free-flight conditions, and allowed 
evaluation of the optomotor system performance. 

The imposed motion schedule consisted of 3.75 s of zero 
imposed motion, then 7.5 s of clockwise rotation at 44 deg/s. 
Figure shows the torque data and resulting stimulus position 
for an individual trial. Figure shows the averaged data over 
139 trials in a total of five animals. See Warzecha and 
Egelhaaf, 1996, for details on the experimental protocol. 

The fly is able to stabilize its flight and cancel out most of 
the imposed motion. Simulation results suggest that the 
nonmonotonic temporal frequency response of Reichardt 
motion detectors results in greater stability for the optomotor 
control system (Warzecha and Egelhaaf, 1996). The individual 
trials show an oscillatory component to the torque response 
around 2 Hz. This oscillation is not phase-locked to the 
stimulus since it is not present in the average torque trace. 
Oscillations are not observed under open-loop conditions, 
suggesting they arise from optomotor feedback (Geiger and 
Poggio, 1981; Warzecha and Egelhaaf, 1996). Notice that 
despite the large amplitude of the torque oscillations, the 
position trace is not dominated by this effect. This fluctuation 
amplitude, in terms of number of photoreceptors, is close to 
the amplitude observed in human microsaccades (Warzecha 
and Egelhaaf, 1996). Poggio and colleagues observed similar 
oscillations in closed-loop experiments and proposed that they 
arose from the 60-75 ms synaptic delay inherent in the fly- 
visual system (Geiger and Poggio, 1981; Poggio and 
Reichardt, 1981). 
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Application to Autonomous Vehicle Control 
Optic flow patterns produced by self-motion are one of the 
richest sources of navigation information available to a mobile 
creature (Gibson, 1950). As an animal moves through its 
environment, images of the outside world move across its 
retina in predictable ways. Objects being approached grow 
larger; objects left behind grow smaller. When moving 
forward, images of nearby objects move across the retina 
faster than images of distant objects. If a creature rotates in 
place, the entire visual scene moves across its retina at a rate 
that is independent of object distance. Much information can 
be gained from patterns of visual motion, even if no explicit 
object recognition is performed (Duchon et ah, 1998). Indeed, 
motion parallax information is immune to camouflage that can 
defeat even the most sophisticated static pattern recognition 
scheme when object and background have similar textures. 
Humans have no difficulty detecting the structure of randomly 
patterned objects against identically patterned backgrounds 
from motion cues alone. 

Using egomotion-induced optic flow for robot navigation 
is a computationally demanding sensory task. By its very 
nature it must be done in real time. Most object recognition 
tasks are performed on static images, and often one can 
tolerate latencies of several seconds. But optic flow is 
available only while the robot is moving, and relevant 
information must be extracted in real time and fed back to the 
motor control system to steer the robot in the right direction. 
The rate of computation needed depends on the rate of robot 
motion, but typical real-world situations require times on the 
order of tens or hundreds of milliseconds. 
 
Robot Optomotor System 
As mentioned above, the fly uses visual motion information to 
stabilize its flight. Mismatch of body components or 
environmental disturbances may impart rotation on the animal, 
but sensory feedback is used to produce compensatory torque 
responses. This sensorimotor feedback is known as the 
optomotor system, and is one of the best-studied behaviors of 
the fly (Gotz, 1975; Warzecha and Egelhaaf, 1996). 

7. NONLINEAR SPATIAL INTEGRATION 
 

In the previous chapters, we have described arrays of 
Reichardt elementary motion detectors with linear spatial 
integration—currents from each EMD are tied to a single wire 
and sum linearly. In this chapter we will explain why linear 
spatial integration is undesirable and introduce a circuit 
architecture of nonlinear integration based on the properties of 
wide-held lobular plate neurons in the fly’s optic lobe. 

Real-world optic flow fields are sparse. Natural images 
have areas of little or no contrast such as blank patches of sky. 
The lack of spatial detail in these areas leads to “holes” in the 
otherwise full-field patterns of optic flow produced by 
rotation. When estimating self-rotation, for example, one 
would like to extract information based on wide-held motion 
that is robust against these gaps. 

 
Gain Control in Fly Tangential Neurons 
Flies have developed a remarkably elegant method for dealing 
with optical flow sparseness. The optic lobe in the brain of the 
fly contains several wide-held motion-sensitive neurons that 
integrate motion information from many elementary motion 
detectors (EMDs) in large receptive fields to produce 
estimations of self-rotation (Krapp and Hengstenberg, 1996). 
These neurons have been studied for decades, and much is 
known about their response properties. One property exhibited 
by some of these cells is called gain control, and seems to 
make the sensory response robust against gaps in the optical 
flow field. 

Gain control describes the saturating response of these 
motion-sensitive cells with increasing stimulus size. As the 
extent of the stimulating pattern across the visual receptive 
field increases linearly, the response of the cell saturates, but it 
saturates at different levels for different stimulus velocities. 
This cannot be explained by a simple saturating output 
channel. The wide-held motion-sensitive neuron is integrating 
motion information spatially, but this integration is nonlinear. 
This size-dependent saturation assures that at reasonably high 
levels of stimulation, the cell is not sensitive to gaps in the 
optic flow field. (Featureless parts of the visual scene decrease 
the effective stimulus size.) The cell now encodes the stimulus 
velocity, which in this case may represent a measure of self-
rotation, largely independent of the visual sparseness of the 
environment. Featureless areas Features. 

 
Figure 6: Gaps in optic flow fields. In natural images, some areas are 

featureless, and thus convey no local motion information. 
 
They effectively decrease the pattern size. A wide-field 
motion sensor ideally should integrate optic flow from a large 
field of view, but the presence of some featureless areas 
should not affect its output. (“Ignore the blank parts.”) 
 
Algorithm and Biological Architecture 
The neural architecture and biophysical mechanisms 
underlying gain control in the fly are now understood (Borst et 
ah. 1995; Single et ah. 1997). Simple linear models of spatial 
integration result in an output that is linearly dependent on 
stimulus size. Size-dependent saturation comes about if we use 
a more accurate model of the wide-field motion-sensitive 
neuron. In this model, the EMD outputs are not directly 
conveyed to the wide-field neuron. Instead, the EMDs 
modulate synapses, which are modeled as conductances 
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between the intracellular potential and a fixed ion reversal 
potential. Depending on the type of ion involved, the reversal 
potential can be above or below the resting potential of the 
cell, creating excitatory or inhibitory synapses. We connect 
preferred-direction EMDs to excitatory synapses and null
direction EMDs to inhibitory synapses. Each EMD modulates 
its corresponding ion channel conductance, which acts to pull 
the cell away from its resting potential, where it is held b
fixed leakage conductance. 

Figure 7: Gain control in a wide-field motion-sensitive neuron in the fly

 
The cell response saturates with increasing pattern size, and 
saturates at different levels depending on the stimulus velocity 
(vl = 72°/sec; v2 = 360°/sec). Stimulus was a sinusoidal 
grating with spatial wavelength of 24° and 29% contrast. Data 
represent mean ± SKA I of extracellular recordings from the 
lobula plate spiking neuron HI of four different female 
blowflies (Calliphora erythrocephala). Data reprinted from 
(Single et ah, 1997). 
 

8. SYSTEM INTEGRATION
 

As discussed in Chapter 2, flies use a wide variety of sensors 
to execute tasks. In most autonomous systems, sensors of 
many types will be present. How can the motion sensors 
described in the previous chapters be integrated with sensors 
of other types, particularly vestibular sensors? This chapter 
addresses possible strategies for sensory fusion that use the 
strengths of one sensor to compensate for deficiencies in 
another. 
Visual Motion Sensors and Their Limitations
Visual motion sensors have a significant limitation which 
must be taken into account when using their signals at the 
system level: In the absence of a patterned visual stimulus, it 
is impossible to compute optic flow. If the sensor 
towards a blank wall or if the environment is completely dark, 
the motion sensor will have a “zero optic flow” output 
regardless of the relative motion between the sensor and the 
external environment. In this case, we should ignore the 
motion sensor. On the other hand, if the sensor is looking at a 
high-contrast, patterned stimulus and reports “zero optic 
flow,” that conveys a great deal of information. In order to 
combine visual and vestibular information reliably, we need 
some type of “confidence measure” from the visual motion 
sensor that conveys some information about the contrast of 
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between the intracellular potential and a fixed ion reversal 
potential. Depending on the type of ion involved, the reversal 
potential can be above or below the resting potential of the 

napses. We connect 
direction EMDs to excitatory synapses and null-

direction EMDs to inhibitory synapses. Each EMD modulates 
its corresponding ion channel conductance, which acts to pull 
the cell away from its resting potential, where it is held by the 

 

 
sensitive neuron in the fly 

The cell response saturates with increasing pattern size, and 
saturates at different levels depending on the stimulus velocity 

360°/sec). Stimulus was a sinusoidal 
grating with spatial wavelength of 24° and 29% contrast. Data 
represent mean ± SKA I of extracellular recordings from the 
lobula plate spiking neuron HI of four different female 

Data reprinted from 

SYSTEM INTEGRATION 

As discussed in Chapter 2, flies use a wide variety of sensors 
to execute tasks. In most autonomous systems, sensors of 
many types will be present. How can the motion sensors 

previous chapters be integrated with sensors 
of other types, particularly vestibular sensors? This chapter 
addresses possible strategies for sensory fusion that use the 
strengths of one sensor to compensate for deficiencies in 

s and Their Limitations 
Visual motion sensors have a significant limitation which 
must be taken into account when using their signals at the 
system level: In the absence of a patterned visual stimulus, it 
is impossible to compute optic flow. If the sensor is pointed 
towards a blank wall or if the environment is completely dark, 
the motion sensor will have a “zero optic flow” output 
regardless of the relative motion between the sensor and the 
external environment. In this case, we should ignore the 

nsor. On the other hand, if the sensor is looking at a 
contrast, patterned stimulus and reports “zero optic 

flow,” that conveys a great deal of information. In order to 
combine visual and vestibular information reliably, we need 

ce measure” from the visual motion 
sensor that conveys some information about the contrast of 

patterns in the field of view. 
We propose a simple method to return a confidence 

measure from the motion sensor. We measure the local spatial 
derivative in the direction of each motion detector, then sum 
the absolute value of all these spatial derivatives over the 
receptive field of the sensor. If this value is low, we know 
there is no significant image contrast, and we should ignore 
the output of the motion sensor

We use an “antibump” circuit to estimate the absolute 
value of the spatial derivative at each pixel. This compact, 
five-transistor circuit, originally described by Delbriick, 
produces a current that approximates the absolute value of the 
differential voltage input over a range of about 8
(Delbriick, 1993a). Figure shows the antibump circuit. Its 
output current I o u t  is given by 

Figure 8s: Antibump circuit.
 
When lj and V2 are similar, most of the bias current 
through the middle leg. When lj and Vj are very different, 
most of the bias current will flow through either the left or 
right outer leg, increasing the output current 
where W/L  is the width-to
transistor. 

Figure shows the measured response of such a circuit 
fabricated in a 1.2 /mi process with 
indicates a functional value of S =
narrower effective channel width also observed by Delbriick 
in his original experiments with this circuit (Delbriick, 1993a).

If the differential voltage to the antibump circuit comes 
from two adjacent photoreceptors, the output will approximate 
the absolute value of the spatial derivative along an axis. Since 
the output of these circuits is a current, it is trivial to sum the 
signals over the entire EMD array, and thus generate a 
monotonic measure of image contrast.
 
Coriolis-Force Gyroscopes and Their Limitations
As we discussed in Section 2.2, flies rely on Coriolis
sensors to provide angular velocity infor
Many commorcially-availablo gyroscopes today operate on 
the same principle: A mass is driven into oscillation, and the 
Coriolis force normal to the axis of oscillation is measured. 
For a review of small Coriol
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We propose a simple method to return a confidence 
measure from the motion sensor. We measure the local spatial 

rection of each motion detector, then sum 
the absolute value of all these spatial derivatives over the 
receptive field of the sensor. If this value is low, we know 
there is no significant image contrast, and we should ignore 
the output of the motion sensor. 

We use an “antibump” circuit to estimate the absolute 
value of the spatial derivative at each pixel. This compact, 

transistor circuit, originally described by Delbriick, 
produces a current that approximates the absolute value of the 
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are similar, most of the bias current If, flows 
through the middle leg. When lj and Vj are very different, 
most of the bias current will flow through either the left or 
right outer leg, increasing the output current I o u  

to-length ratio of each MOS 

e measured response of such a circuit 
fabricated in a 1.2 /mi process with S =  16. The theoretical fit 

S =  50. This is likely due to the 
narrower effective channel width also observed by Delbriick 

with this circuit (Delbriick, 1993a). 
If the differential voltage to the antibump circuit comes 

from two adjacent photoreceptors, the output will approximate 
the absolute value of the spatial derivative along an axis. Since 

a current, it is trivial to sum the 
signals over the entire EMD array, and thus generate a 
monotonic measure of image contrast. 

Force Gyroscopes and Their Limitations 
As we discussed in Section 2.2, flies rely on Coriolis-force 

e angular velocity information during flight. 
availablo gyroscopes today operate on 

the same principle: A mass is driven into oscillation, and the 
Coriolis force normal to the axis of oscillation is measured. 
For a review of small Coriolis-force gyroscopes, see 
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Sodorkvist, 1994. 
The SNR of a gyroscope is proportional to angular 

velocity. Typical small Coriolis-force gyroscopes have 
sensitivities of around 1 deg/s, and operate on 35 mW of 
power. However, as we decrease power usage in MEMS 
gyroscopes to the microwatt range, their sensitivities will 
decrease. Both signal-to-noise ratio and bandwidth are 
proportional to power dissipation in analog systems (Vittoz, 
1994). Visual motion sensors can be designed to detect very 
slow velocities of optic flow simply byincreasing their time 
constants or decreasing the angular spacing between adjacent 
photoreceptors. Perhaps wide-field optic flow sensors could 
fill in information about low angular velocities. 
 

9. CONCLUSION 
 

In this dissertation, we have presented VLSI circuits modeled 
after neural mechanisms in the visual system of the fly. We 
have characterized these sensors and compared them against 
their counterparts in biology. Our biologically-inspired sensors 
operate at sub-milliwatt power levels—the lowest of any VLSI 
motion sensor we are aware of—and are capable of perceptual 
discriminations in situations where the signal is weaker than 
the noise. While testing our circuits, we developed new 
methodologies for evaluating the robustness of visual motion 
sensors in natural-image conditions. We investigated several 
circuit architectures to improve the robustness of these motion 
detectors by incorporating computational strategies used by 
the fly. By increasing our system’s biophysical fidelity, we 
increased its performance—an encouraging example of how 
biologically-inspired approaches to engineering can yield 
valuable results. 
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