

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 8, Issue 7, July 2021)

1

Implementation of UART with BIST Technique in
FPGA

USHA T, DIVYA L.V.V

M. Tech Scholar, Assistant Professor
Department of ECE

ISTS Women’s Engineering College, Rajanagaram, Rajamahendravaram, A.P, India.

Abstract - Asynchronous serial communication is usually
implemented by Universal Asynchronous Receiver Transmitter
(UART), mostly used for short distance, low speed, low cost data
exchange between processor and peripherals. UART allows full
duplex serial communication link, and is used in data
communication and control system. There is a need for realizing
the UART function in a single or a very few chips. Further,
design systems without full testability are open to the increased
possibility of product failures and missed market opportunities.
Also, there is a need to ensure the data transfer is error proof.
This paper targets the introduction of Built-in self test (BIST)
and Status register to UART, to overcome the above two
constraints of testability and data integrity. The 8-bit UART with
status register and BIST module is coded in Verilog HDL and
synthesized and simulated using Xilinx XST and ISim version
14.4 and realized on FPGA. The results indicate that this model
eliminates the need for higher end, expensive testers and thereby
it can reduce the development time and cost.

Index Terms - UART, BIST, Error check, Status register, LFSR.

1. INTRODUCTION

A UART (Universal Asynchronous Receiver/Transmitter) is
the microchip with programming that controls a computer's
interface to its attached serial devices. Specifically, it provides
the computer with the RS-232C Data Terminal Equipment
(DTE) interface so that it can "talk" to and exchange data with
modems and other serial devices. As part of this interface, the
UART also Converts the bytes it receives from computer
along parallel circuits into single serial bit stream for
outbound transmission. On inbound transmission, converts
the serial bit stream into the bytes that the computer
handles. Adds a parity bit (if it's been selected) on outbound
transmissions and checks the parity of incoming bytes (if
selected) and discards the parity bit. Adds start and stop
delineators on outbound and strips them from inbound
transmissions Handles interrupts from the keyboard and
mouse (which are serial devices with special ports) May
handle other kinds of interrupt and device management
that require coordinating the computer's speed of operation
with device speeds.
 Serial transmission is commonly used with modems and
for non-networked communication between computers,
terminals and other devices.

Fig.1. Serial Data Transmission

 The communications links across which computers or parts
of computers talk to one another may be either serial or
parallel. A parallel link transmits several streams of
data(perhaps representing particular bits of a stream of bytes)
along multiple channels (wires, printed circuit tracks, optical
fibers etc.) a serial link transmits a single stream of data. At
first sight it would seem that a serial link must be inferior to a
parallel one, because it can transmit less data on each clock
tick. However, it is often the case that serial links can be
clocked considerably faster than parallel links, and
achieve a higher data rate. A number of factors allow serial
to be clocked at a greater rate:

• Clock skew between different channels is not an
issue (for unclocked serial links)

• A serial connection requires fewer interconnecting
cables (e.g. wires/fibres) and hence occupies less
space. The extra space allows for better isolation
of the channel from its surroundings

• Crosstalk is less of an issue, because there are fewer
conductors in proximity.

 In many cases, serial is a better option because it is
cheaper to implement. Many ICs have serial interfaces, as
opposed to parallel ones, so that they have fewer pins
and are therefore cheaper.
 In telecommunications and computer science, serial
communications is the process of sending data one bit at one
time, sequentially, over a communications channel or
computer bus. This is in contrast to parallel communications,
where all the bits of each symbol are sent together. Serial
communications is used for all long-haul communications
and most computer networks, where the cost of cable
and synchronization difficulties make parallel
communications impractical. Serial computer buses are
becoming more common as improved technology enables
them to transfer data at higher speeds.

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 8, Issue 7, July 2021)

2

1.2 Serial versus parallel

 The Serial Port is harder to interface than the Parallel Port.
In most cases, any device you connect to the serial port will
need the serial transmission converted back to parallel so
that it can be used. This can be done using a UART. On the
software side of things, there are many more registers that you
have to attend to than on a Standard Parallel Port. (SPP)

1. Serial Cables can be longer than Parallel cables.
2. Serial communication don't need as many wires than

parallel transmission.
3. Microcontrollers have also proven to be quite popular

recently.
 Many of these have in built SCI (Serial Communications
Interfaces) which can be used to talk to the outside world.
Serial Communication reduces the pin count of these MPU's.
Only two pins are commonly used, Transmit Data (TXD)
and Receive Data (RXD) compared with at least 8 pins if
you use a 8 bit Parallel method (You may also require a
Strobe).

 There are two primary forms of serial transmission:
Synchronous and Asynchronous. Depending on the modes
that are supported by the hardware, the name of the
communication sub-system will usually include, if it supports
Asynchronous communications and if it supports Synchronous
communications. Both forms are described below.

1.3 Synchronous Serial Transmission

 Synchronous serial transmission requires that the sender
and receiver share a clock with one another, or that the sender
provide a strobe or other timing signal so that the receiver
knows when to “read” the next bit of the data. In most
forms of serial Synchronous communication, if there is no
data available at a given instant to transmit, a fill character
must be sent instead so that data is always being
transmitted.

 Synchronous communication is usually more efficient
because only data bits are transmitted between sender and
receiver, and synchronous communication can be more costly
if extra wiring and circuits are required to share a clock signal
between the sender and receiver.

 A form of Synchronous transmission is used with printers
and fixed disk devices in that the data is sent on one set of
wires while a clock or strobe is sent on a different wire.
Printers and fixed disk devices are not normally serial
devices because most fixed disk interface standards send an
entire word of data for each clock or strobe signal by using a
separate wire for each bit of the word.

 In the PC industry, these are known as Parallel devices.
The standard serial communications hardware in the PC
does not support Synchronous operations. This mode is
described here for comparison purposes only.

1.4 Asynchronous Serial Transmission

 Asynchronous serial communication has advantages of
less transmission line, high reliability, and long transmission

distance, therefore is widely used in data exchange between
computer and peripherals. Asynchronous serial
communication is usually implemented by Universal
Asynchronous Receiver Transmitter (UART). UART allows
full-duplex communication in serial link, thus has been widely
used in the data communications and control system.

 In actual applications, usually only a few key features of
UART are needed. Specific interface chip will cause waste of
resources and increased cost. Particularly in the field of
electronic design, SOC technology is recently becoming
increasingly mature.

 This situation results in the requirement of realizing the
whole system function in a single or a very few chips.
Designers must integrate the similar function module into
FPGA. This paper uses VHDL to implement the UART core
functions and integrate them into a FPGA chip to achieve
compact, stable and reliable data transmission, which
effectively solves the above problem.

 Basic UART communication needs only two signal lines
(RXD, TXD) to complete full-duplex data communication.
TXD is the transmit side, the output of UART; RXD is the
receiver, the input of UART. UART’s basic features are:

There are two states in the signal line, using logic 1 (high) and
logic 0(low) to distinguish respectively. For example, when
the transmitter is idle, the data line is in the high logic state.

 Otherwise when a word is given to the UART for
asynchronous transmissions, a bit called the "Start Bit" is
added to the beginning of each word that is to be transmitted.

 The Start Bit is used to alert the receiver that a word of
data is about to be sent, and to force the clock in the receiver
into synchronization with the clock in the transmitter. These
two clocks must be accurate enough to not have the frequency
drift by more than 10% during the transmission of the
remaining bits in the word.

 After the Start Bit, the individual data bits of the word are
sent, with the Least Significant Bit (LSB) being sent first.
Each bit in the transmission is transmitted for exactly the same
amount of time as all of the other bits, and the receiver “looks”
at the wire at approximately halfway through the period
assigned to each bit to determine if the bit is a 1 or a 0. For
example, if it takes two seconds to send each bit, the receiver
will examine the signal to determine if it is a 1 or a 0 after one
second has passed, then it will wait two seconds and then
examine the value of the next bit, and so on.

 When the entire data word has been sent, the transmitter
may add a Parity Bit that the transmitter generates. The Parity
Bit may be used by the receiver to perform simple error
checking. Then at least one Stop Bit is sent by the transmitter.

 When the receiver has received all of the bits in the data
word, it may check for the Parity Bits (both sender and
receiver must agree on whether a Parity Bit is to be used), and
then the receiver looks for a Stop Bit. If the Stop Bit does not
appear when it is supposed to, the UART considers the entire
word to be garbled and will report a Framing Error to the host
processor when the data word is read. The usual cause of a

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 8, Issue 7, July 2021)

3

Framing Error is that the sender and receiver clocks were not
running at the same speed, or that the signal was interrupted.

 Regardless of whether the data was received correctly or
not, the UART automatically discards the Start, Parity and
Stop bits. If the sender and receiver are configured identically,
these bits are not passed to the host.

 If another word is ready for transmission, the Start Bit for
the new word can be sent as soon as the Stop Bit for the
previous word has been sent. Because asynchronous data are
“self-synchronizing”, if there are no data to transmit, the
transmission line can be idle.

 Asynchronous serial communication describes an
asynchronous transmission protocol in which a start signal is
sent prior to each byte, character or code word and a stop
signal is sent after each code word.

 The start signal serves to prepare the receiving mechanism
for the reception and registration of a symbol and the
stop signal serves to bring the receiving mechanism to
rest in preparation for the reception of the next symbol.
A common kind of start-stop transmission is ASCII over
RS-232, for example for use in teletypewriter operation.

 In the diagram, a start bit is sent, followed by eight
data bits, no parity bit and one stop bit, for a 10-bit
character frame. The number of data and formatting bits,
and the transmission speed, must be pre-agreed by the
communicating parties.After the stop bit, the line may remain
idle indefinitely, or another character may immediately be
started.

1.5 Bits, Baud and Symbols

 Baud is a measurement of transmission speed in
asynchronous communication. Because of advances in modem
communication technology, this term is frequently misused
when describing the data rates in newer devices.

Gigure.3. A

synchronous Serial Transmission

1.5.1 Baud Rate Generator

 Baud Rate Generator is actually a frequency divider. The
baud rate frequency factor can be calculated according to a
given system clock frequency (oscillator clock) and the
requested baud rate.

 The calculated baud rate frequency factor is used as the
divider factor. In this design, the frequency clock produced by
the baud rate generator is not the baud rate clock, but 16 times
the baud rate clock. The purpose is to precisely sample the
asynchronous serial data at the receiver.
 Assume that the system clock is 32MHz, baud rate is
9600bps, and then the output clock frequency of baud rate
generator should be 16 * 9600Hz. Therefore the frequency
coefficient (M) of the baud rate generator is:
M =32MHz/16*9600Hz=208
 When the UART receives serial data, it is very critical to
determine where to sample the data information. The ideal
time for sampling is at the middle point of each serial data bit.
In this design, the receive clock frequency is designed to be 16
times the baud rate, therefore, each data width received by
UART is 16 times the receive clock cycle.

2. RECEIVER MODULE

 During the UART reception, the serial data and the receiving
clock are asynchronous, so it is very important to correctly
determine the start bit of a frame data. The receiver module
receives data from RXD pin. RXD jumps into logic 0 from
logic 1 can be regarded as the beginning of a data frame.
When the UART receiver module is reset, it has been waiting
the RXD level to jump.

 The start bit is identified by detecting RXD level changes
from high to low. In order to avoid the misjudgment of the
start bit caused by noise, a start bit error detect function is
added in this design, which requires the received low level in
RXD at least over 50% of the baud rate to be able to determine
the start bit arrives. Since the receive clock frequency is 16
times the baud rate in the design, the RXD low level lasts at
least 8 receiving clock cycles is considered start bit arrives.

 Once the start bit been identified, from the next bit, begin
to count the rising edge of the baud clock, and sample RXD
when counting. Each sampled value of the logic level is
deposited in the register rbuf [7, 0] by order. When the count
equals 8, all the data bits are surely received, also the 8 serial
bits are converted into a byte parallel data.

 The serial receiver module includes receiving, serial and
parallel transform, and receive caching, etc. In this paper we
use finite state machine to design, shown in Fig. 3

 The state machine includes five states: R_START
(waiting for the start bit), R_CENTER (find midpoint),
R_WAIT (waiting for the sampling), R_SAMPLE (sampling),
and R_STOP (receiving stop bit).

R_START Status: When the UART receiver is reset, the
receiver state machine will be in this state. In this state, the
state machine has been waiting for the RXD level to jump
over from logic 1 to logic 0, i.e. the start bit.

 This alerts the beginning of a new data frame. Once the
start bit is identified, the state machine will be transferred to
R_CENTER state. In Fig. 3, RXD_SYNC is a synchronization
signal of RXD. Because when sampling logic 1 or logic 0, we

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 8, Issue 7, July 2021)

4

do not want the detected signal to be unstable. So we do not
directly detect RXD signal, but detect the synchronization
signal RXD_SYNC.
R_CENTER Status: For asynchronous serial signal, in order
to detect the correct signal each time, and minimize the total
error in the later data bits detection. Obviously, it is the most
ideal to detect at the middle of each bit.
 In this state, the task is to find the midpoint of each bit
through the start bit. The method is by counting the number of
bclkr (the receiving clock frequency generated by the baud
rate generator) (RCNT16 isthe counter of bclkr).
 In addition, the start bit detected in the R_START may not
be a really start bit, it may be an occasional interference sharp
pulse (negative pulse). This interference pulse cycle is very
short. Therefore, the signal that maintains logic 0 over 1 / 4 bit
time must be a start bit.

R_WAIT Status: When the state machine is in this state,
waiting for counting bclkr to 15, then entering into
R_SAMPLE to sample the data bits at the 16th bclkr.At the
same time determining whether the collected data bit length
has reached the data frame length (FRAMELEN). If reaches, it
means the stop bits arrives. The FRAMELEN is modifiable in
the design (using the Generic). In this design it is 8, which
corresponds to the 8-bit data format of UART.

R_SAMPLE Status: Data bit sampling. After sampling the
state machine transfers to R_WAIT state unconditionally,
waits for the arrival of the next start bit.

R_STOP Status: Stop bit is either 1 or 1.5, or 2. State
machine doesn’t detect RXD in R_STOP, output frame
receiving done signal (REC_DONE <= '1 '). After the stop bit,
state machine turns back to R_START state, waiting for the
next frame start bit.

 The function of transmit module is to convert the sending
8-bit parallel data into serial data, adds start bit at the head of
the data as well as the parity and stop bits at the end of the
data.
 When the UART transmit module is reset by the reset
signal, the transmit module immediately enters the ready state
to send. In this state, the 8-bit parallel data is read into the
register txdbuf [7: 0]. The transmitter only needs to output 1
bit every 16 bclkt (the transmitting clock frequency generated
by the baud rate generator) cycles.
 The order follows 1 start bit, 8 data bits, 1 parity bit and 1
stop bit. The parity bit is determined according to the number
of logic 1 in 8 data bits. Then the parity bit is output. Finally,
logic 1 is output as the stop bit. Fig.4 shows the transmit
module state diagram.

XMIT_CMD. XMIT_CMD_P is a processed signal of
XMIT_CMD, which is a short pulse signal. Since
XMIT_CMD is an external signal, outside FPGA, its pulse
width is unable to be limited. If XMIT_CMD is valid, it is still
valid after sending on UART data frame.

 Then the UART transmitter will think by mistake that a new
data transmit command has arrived, and once again start the
frame transmit. Obviously the frame transmit is wrong. Here
we limit the pulse width of XMIT_CMD. XMIT_CMD_P is
its processed signal. When XMIT_CMD_P = '1 ', the state
machine transferred to X_START, get ready to send a start bit.
X_START Status: In this state, sends a logic 0 signal to the
TXD for one bit time width, the start bit. Then the state
machine transferred to X_WAIT state. XCNT16 is the counter
of bclkt.
X_WAIT Status: Similar with the R_WAIT of UART receive
state machine.
X_SHIFT Status: In this state, the state machine realizes the
parallel to serial conversion of outgoing data. Then
immediately return to X_WAIT state.
X_STOP Status: Stop bit transmit state. When the data frame
transmit is completed, the state machine transferred to this
state, and sends 16 bclkt cycle logic 1 signal, that is, 1 stop bit.
The state machine turns back to X_IDLE state after sending
the stop bit, and waits for another data frame transmit
command.

 Traditionally, a Baud Rate represents the number of bits
that are actually being sent over the media, not the amount of
data that is actually moved from one DTE device to the ot her.
The Baud count includes the overhead bits Start, Stop and
Parity that are generated by the sending UART and removed
by the receiving UART. This means that seven-bit words of
data actually take 10 bits to be completely transmitted.

 Therefore, a modem capable of moving 300 bits per second
from one place to another can normally only move 30 7-bit
words if Parity is used and one Start and Stop bit are
present. If 8-bit data words are used and Parity bits are also
used, the data rate falls to 27.27 words per second, because
it now takes 11 bits to send the eight-bit words, and the
modem still only sends 300 bits per second.

 The formula for converting bytes per second into a
baud rate and vice versa was simple until error-correcting
modems came along. These modems receive the serial stream

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 8, Issue 7, July 2021)

5

of bits from the UART in the host computer (even when
internal modems are used the data is still frequently
serialized) and converts the bits back into bytes.

 These bytes are then combined into packets and sent
over the phone line using a Synchronous transmission
method. This means that the Stop, Start, and Parity bits added
by the UART in the DTE (the computer) were removed by
the modem before transmission by the sending modem. When
these bytes are received by the remote modem, the remote
modem adds Start, Stop and Parity bits to the words, converts
them to a serial format and then sends them to the receiving
UART in the remote computer, who then strips the Start,
Stop and Parity bits.

 The reason all these extra conversions are done is so that
the two modems can perform error correction, which means
that the receiving modem is able to ask the sending modem to
resend a block of data that was not received with the correct
checksum. This checking 12 is handled by the modems,
and the DTE devices are usually unaware that the process is
occurring.

Asynchronous Serial Reception

 A multiplexed data communication pulse can only be in
one of two states but there are many names for the two states.
When on, circuit closed, low voltage, current flowing, or a
logical zero, the pulse is said to be in the "space"
condition. When off, circuit open, high voltage, current
stopped, or a logical one, the pulse is said to be in the
"mark" condition. A character code begins with the data
communication circuit in the space condition. If the mark
condition appears, a logical one is recorded otherwise a
logical zero. There are six basic steps in receiving a serial
character code into a parallel register.

1. To keep track of time, the receiver employs a clock
which "ticks." When the line is in the space condition,
the receiver samples the line 16 times the data rate.
In other words, a data interval is equal to 16 clock
ticks. In this way the receiver can determine the
beginning of the start bit and "move over" to the center
of the bit time for data sampling.

2. when the line goes into the mark state, declare a "looking
for start bit" condition and wait one half the bit interval
or eight clock ticks.

3. sample the line again and if it has not remained in the
mark condition, consider this to be a spurious voltage
change and go back to step one.

4. if the line was still in the mark state, then consider
this a valid start bit. Shift the start bit into an eight-bit
shift register and wait one bit time or 16 clock ticks.

5. after one bit time sample the line (the data should have
been there for the last eight clock ticks, and should
remain for eight more clock ticks). Now shift the
sample into the shift register.

6. continue steps four and five seven more times. After the
eighth shift, the start bit will "migrate" into a flip-flop
indicating character received.

7. Go to step one.

 Before the transmitter and receiver UARTs will work, they
must also agree on the same values of five parameters.

1. both sides must agree on the number of bits per
character.

2. the speed or Baud of the line must be the same on
both sides.

3. both sides must agree to use or not use parity.
4. if parity is used, both sides must agree on using odd

or even parity.
5. the number of stop bits must be agreed upon.

 Having said all this, most DTEs today employ eight data
bits, no parity, and one stop bit. Thus there is a rule-of-
thumb that the number of characters per second is equal
to the Baud divided by 10 for a typical RS-232 or RS-423
data line.

Other UART Functions

 In addition to the basic job of converting data from parallel
to serial for transmission and from serial to parallel on
reception, a UART will usually provide additional circuits for
signals that can be used to indicate the state of the
transmission media, and to regulate the flow of data in the
event that the remote device is not prepared to accept more
data.

 For example, when the device connected to the UART
is a modem, the modem may report the presence of a carrier
on the phone line while the computer may be able to instruct
the modem to reset itself or to not take calls by raising or
lowering one more of these extra signals. The function of
each of these additional signals is defined in the EIA
RS232-C standard.

3. SIMULATION OF MODULES

Baud Rate Generator Simulation

 During simulation, the system clock frequency is set to
32MHz, and baud rate is set to 9600bps. Therefore the
receiving sampling clock frequency generated by the baud rate
generator is 153600Hz, which is 16 times of the baud rate.
Thus the frequency coefficient of baud rate generator can be
calculated, which equals 208.
 Figure 5 shows the simulation result of baud rate generator.
The simulation report shows that this module uses 42 logic
elements （ <1%） , 33 registers (2%), and meets timing
requirement.

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 8, Issue 7, July 2021)

6

Fig 3.1-: Simulation Result of Baud Rate Generator

Receiver Simulation

 During receiver simulation, the receiving sampling clock
frequency generated by the baud rate generator is set to
153600 Hz, UART receiving baud rate is set to 9600bps. The
input sequence is: 00110110001, including the start bit 0,
parity bit 0 and 1 stop bit. The received data is stored into the
register rbuf.
 Fig. 6 shows the receiver module simulation diagram. The
figure shows that the data in rbuf from high to low is
00110110, which is just the part of data bits of UART frame.

Fig 3.2 -: Receiver Simulation Diagram

Transmitter Simulation

 During transmitter simulation, the sending clock frequency
generated by the baud rate generator is set to 153600 Hz, and
UART transmitting baud rate is set to 9600bps.
 Figure 7 shows the transmitter module simulation diagram.
The simulation report shows that this module uses 78 logic
elements（<1%, 13 pins (4%), and meets timing requirement.

Fig3.3 -: transmitter simulation diagram

RTL of Top File
Fig.3.3 shows the RTL of UART Top File. It includes the
baud rate generator, receiver, and transmitter modules.

Fig 3.4 -: RTL of Top File

4. SIMULATION RESULTS

UART

The above figure shows the simulation of the universal
asynchronous reception and transmission of the data.

ADVANTAGES AND APPLICATIONS
 UART has a lot of applications and advantages. The
following are the applications and advantages of the UART.
ADVANTAGES
The advantages of the UART are as follows:
1. Low cost
2. Requires single transmission line
3. Low power consumption
4. Error free transmission
5. Full duplex communication

APPLICATIONS
The applications of the UART are as follows:
UART has lot of applications in emerging world, they are as
follows

1. For low speed applications in short distance
communication.

2. Used in data exchange between computer and
peripherals.

3. Widely used in data communication systems.
4. GPS systems
5. Modems

5. CONCLUSION

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 8, Issue 7, July 2021)

7

 The Universal Asynchronous Receiver/Transmitter
(UART) takes bytes of data and transmits the individual bits in
a sequential fashion. At the destination, a second UART re-
assembles the bits into complete bytes. Each UART contains
which is the fundamental method of conversion between serial
and parallel forms. Serial transmission of digital information
(bits) through a single wire or other medium is much more
cost effective than parallel transmission through multiple
wires.

 This project proposes the hardware implementation of vlsi
architecture for UART that have been modified to improve
performance. This project was implemented in verilog the
coding is done in Verilog HDL and the FPGA synthesis is
done using Xilinx Spartan library.
 Now a days UART is one of the emerging field technology
in the communication world and it is used in the short distance
communication for low cost applications.

REFERENCES

[1]. S. Wang, “Generation of low power dissipation and high fault coverage

patterns for scan-based BIST”, in Proceedings of International Test
Conference, 2002, pp. 834 –843.

[2]. M. Ibrahim Abubakar, “A Built in Self Testable Bit-Slice Processor”,
Faculty of Computer Science & Information Technology, University of
Malaya, May 1995.

[3]. J. Turino, “RTL DFT Rule Checking – The Circuit Designer’s Secret
Weapon”, Integrated System DesignMagazine, 2000.

[4]. A. P. Stroele, and H. J. Wunderlich, “Hardware-Optimal Test Register
Insertion”, in IEEE Transactions OnComputer-Aided Design of
Integrated Circuits and Systems, June 1998, Vol. 17, No. 6, pp. 531-
539.

[5]. Z. Navabi, “VHDL Analysis and Modeling of Digital Systems”,
McGraw-Hill Inc., 1991.

[6]. M. S. Michael, “A Comparison of the INS8250, NS16450 and
NS16550AF Series of UARTs”, NationalSemiconductor Application
Note 493, April 1989.

[7]. “PC16550D Universal Asynchronous Receiver/Transmitter with
FIFOs”, National Semiconductor ApplicationNote, June 1995.

[8]. M. S. Harvey, Generic UART Manual, SiliconValley, December 1999.
[9]. O. A. Petlin, and S. B. Furber, "Built-In-Self-Testing of

Micropipelines” in Advanced Research in AsynchronousCircuits and
Systems, IEEE, 1997, pp 22-29.

[10]. J. Turino, “RTL DFT Rule Checking – The Circuit Designer’s Secret
Weapon”, Integrated System DesignMagazine, 2000.

[11]. C. H. Roth, Digital System Design Using VHDL, PWS Publishing
Company, 1998

[12]. http://www.xess.com

