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Abstract: Aerodynamic stability of a proposed Cable Stayed Pre-

stressed Concrete Bridge of span 480 m under wind loads have 

been studied. Flutter and buffeting responses due to wind loads 

was investigated on a sectional mode to the scale of 1:200. The 

model was tested in a  wind tunnel for two values of damping 

(0.03 and 0.06) with different combinations of live loads at the 

ratio of  Nθ / Nz =1.2. The model exhibited coupled vertical and 

torsional oscillations in wind. In addition, another uncoupled 

mode in the form of rolling oscillation about the longitudinal axis 

of the tunnel was also consistently observed. This type of 

oscillation has not been reported in the literature and is believed 

to be due to the overtone flexural oscillation of the main span of 

the bridge. After trying out several curative measures, it was 

found that provision of small holes in the bottom of the deck, 

controlled the vertical and rolling oscillations. The test results 

were compared with the theoretical (design) values and 

conclusions drawn for predicting flutter and buffeting responses 

due to wind loads. Fatigue tests were also conducted on ' Ganga 

Bridge ' (Haridwar, U.P, India) and suitable remedial measures 

were suggested to increase the life of the bridge. 

 

Key words— Long-span bridges, Flutter, Buffeting, Aerodynamic 

selection, Preliminary design stage 

 

I. INTRODUCTION 

 

 Of the several bridges existing all over the world, built 

of different material or techniques developed, cable stayed 

bridges stand out as the most recent technological 

development. Stromsund Bridge was the first cable stayed 

highway bridge constructed in Sweden in 1955 with a central 

span of 183 m. Subsequently, a number of cable stayed bridges 

were constructed world over in many countries. Cable stayed 

bridges are considered to be the most suitable system for the 

medium long spans in the range of 100 m to 300 m. However, 

there has been a continuous endeavor to this span limitation. 

Tatara bridge (Japan) with a world record span of 890 m 

opened up the vision for researchers to study the adoption of 

cable stayed systems with spans exceeding 1000 m which has 

been hitherto suspension system. In India too, after the 

completion of Vidyasagar Sethu Bridge (also known as Second 

Hooghly Bridge) at Calcutta, which was the world’s longest 

(457.2 m) cable stayed bridge until 1992, cable stayed system 

found an appropriate place with wider adoption in the years to 

follow. 

The bridge structure requires to be designed for static as 

well as for dynamic wind effects. Static wind loads are derived 

from an assumption of a steady uniform wind with lift, drag 

and moment forces. There have been many instances of 

bending and torsional oscillations of such bridges even at 

moderate speeds. The most spectacular case has been that of 

the original Tacoma Narrows Bridge which finally failed in a 

torsional mode of oscillation at a wind speed of 67 

kmph(ASCE, 1948).Since the Tacoma Narrows bridge 

collapse in 1940, wind engineering researchers made great 

efforts to understand the aeroelastic phenomena associated 

with long span bridges; namely vortex shedding, galloping, 

divergence, flutter, and buffeting response. However, in 

particular, flutter instability and buffeting response of the 

Cable stayed bridge decks are important to obtain the 

aerodynamic stability and can be checked by conducting the 

wind tunnel tests, which are more accurate.  

Flutter is an oscillatory instability induced in the bridge 

deck at a particular critical wind velocity leading to an 

exponentially growing response. One or more modes may 

influence this instability leading to failure due to excessive 

deflections and stresses. Flutter is the aeroelastic instability, 

which originates from the mutual interaction of elastic, 

inertial, damping and self-excited aerodynamic forces. It 

causes the bridge to oscillate in a divergent and destructive 

manner at the same critical wind velocity. Buffeting is the 

random response of a structure due to turbulence in the 

oncoming flow, or due to signature or self-induced turbulence. 

Buffeting response does not generally lead to catastrophic 

failures but is important from serviceability consideration. 

Fatigue is a process of progressive permanent internal 

structural change in a material subjected to repetitive stresses. 

These changes result in progressive growth of cracks and 

fracture. Fatigue is often described as ‘fatigue life’, which 

essentially represents the number of cycles required to cause 

failure in the material under a given repetitive stress. 

 

II. LITERATURE REVIEW 

 

V. Numes, J.W.C and Person A.J., (1979) investigated the 

vibrational behaviour of cable-stayed bridge under wind loads 

in a two-dimensional model and wind tunnel experiments 

were carried out to establish the structural stability of the 

bridge and to determine resonance vibration due to vortex 

shedding (1979). Aerodynamic response of a bridge is affected 

by mean wind direction as well as turbulence. Bridge 

buffeting in yawed wind was investigated by Tanaka et al 

(1993) and Kimura et al (1992) and vortex excited oscillation 
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on 2D and 3D models of rectangular section were investigated 

by Utsunomiya et al (1993). Several investigations [e.g; 

Miyata et al,(1994),  Chen (1994), Tanaka et al (1993), 

Namini et al,(1992), Jones and Scanlan (1991), Bucher and 

Lin (1988,1989) and Lin and Yang(1983)] identified the 

problems of multimode response of long span cable bridges to 

wind excitation. Analysis of flutter and buffeting can be done 

in two ways using time domain methods of Bucher and 

Lin(1988,1989), or frequency domain methods of Tanaka et al 

(1993), Jones and Scanlan(1991), Scanlan and  Jones and Lin 

and Yang (1983). Studies by Tanaka et al (1993), and Bucher 

and Lin (1988, 1989) proposed solutions to the multimode 

flutter and the multimode buffeting problems .Recently, 

multimode flutter and buffeting analyses were developed by 

Jain et al, (1996) based on frequency-domain methods and 

incorporated the theory of Scanlan and Jones (1990), taking 

into account the fully coupled aeroelastic and aerodynamic 

response of long span bridges to wind excitation. However, 

the extent of this coupling was not significant for the span 

lengths considered.  

III. ANALYTICAL METHODS 

Flutter 

The frequencies of oscillation of the proposed bridge are 

identified and have been analysed based on the following 

assumptions:  

(i) All spans have identical mode shapes during 

vibration. 

(ii) The interference of the piers is neglected. 

(iii) Shear deformation and rotatory inertia effects are  

negligible. 

Since all the spans of the bridge are of the same length, one 

typical span of the bridge is considered for analysis. Rayleigh 

method has been used to obtain the frequencies of the bridge. 

The co-ordinates for a typical bridge span are selected and the 

mode shapes assumed for the first two modes of vibration are 

depicted. 

 

For each segment, an assumed deflection profile of the form is  

     y(x) = A1 cos kx + B2 sin kx + Cx + D          (1)  

The various constants A, B, C, D are selected so as to satisfy 

the conditions at the joints. The torsional modes have again 

been analysed using the energy method. It is assumed that the 

piers and towers do not deform when the deck undergoes 

twisting deformation about a longitudinal axis.  Under this 

assumption, it is adequate to consider strain and kinetic 

energies in the deck and in the cable systems. Let θ0 (x) 

represent the amplitude of rotation at any point in the deck. 

Then, maximum strain energy in the deck is  

�� � ��
� � �	
�

	� 
� ���
�                        (2) 

where GJ represents the torsional rigidity of the deck, l = half 

the span of the main deck, 

Maximum Strain energy in the cables is  

� � 2 �
� ∑ ����

��
 cos� �� ���!"�#�$�                       (3) 

Where 2s the distance between two parallel sets of cables on 

the other side of the deck and 

θok the amplitude of rotation at the k
th

 cable. 

Total maximum strain energy V = Vs  +  Vc 

Maximum kinetic energy in the deck: 

% � &�
'(
� � ������

�           (4) 

�� �" � )� sin �,�
�� 
 - )# sin �#,�

�� 
                    (5) 

shear centre and γ is the mass of deck material per unit 

volume. The torsional frequencies can now be obtained from 

the condition δ(V-T) = 0. The shape function θ0 (x) is now 

expressed as, 

This expression satisfies the condition that the rotation of the 

cross section is zero at the supports. By means of the 

Rayleigh-Ritz procedure, the frequencies turn out to be: 

 First symmetric mode : 1.19 Hz 

Second symmetric mode : 1.69 Hz 

Cable stays: High fatigue resistant DINA (Brand name of M/s 

BBR product) cables are considered in this bridge. The length 

of the cables varies from 37 m to 113 m and the number of 7 

mm dia. HT wires in each stay cable varies from 96 to 264. 

The ultimate tensile strength (UTS) of HT wires is taken up to 

1570N/mm 2   and the required fatigue stress is 180 N/mm 2    

with an upper limit of 0.45 UTS. These cables are designed to 

carry ultimate tensile forces in the range of 5,800 kN to 

15,950kN. Frequency of cables was calculated and given in  

Table.1. 

Ca b l

e  No .  

Di a  

(m m)  

Le ng th  

( m)  

Te ns i o

n  (kN)  

F re qu en cy 

( Hz )  

Ve loc i t

y  (m /s )  

1 .  7 6 5 5 . 16  1 89 0 2 .5 0 2 .1 00  

2 .  7 8 5 7 . 73  1 97 0 2 .2 0 1 .9 00  

3  8 2 6 1 . 03  2 15 3 1 .9 5 1 .7 50  

4 .  8 5 6 5 . 27  2 37 0 1 .8 0 1 .6 00  

5 .  9 0 6 9 . 30  2 63 0 1 .7 0 1 .4 00  

6 .  9 6 7 6 . 23  3 14 0 1 .5 5 1 .2 50  

7 .  10 0 8 5 . 43  3 40 5 1 .2 5 1 .1 50  

8 .  10 5 9 6 . 05  3 67 0 1 .1 0 1 .0 20  

9 .  10 7 1 13 .5  3 93 5 1 .0 5 0 .9 05  

The two-dimensional equations of motion for an 

airfoil are 

 

.5.119

/205.33

kmphUor

sm
xK

bN
U
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=
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In the present case, torsion - bending flutter of the 

bridge was considered for the two dimensional 

section.            The flutter determinant                             

was solved by Theodorsen’s method 

Where,  

 

 

 

 

 

 

 

 

 

 

 
Let real and imaginary roots were plotted Vs l /k. It was seen 

that the real and imaginary equations were both satisfied at the 

intersection of the curves when l/k=6.05 and √x = 1.1425 

Hence, the corresponding critical flutter speed 

 

 

Buffeting 

 
Equations of motion for a two-dimensional section of the 

bridge under buffeting excitation may be generalized from eqs. 

(7) And (8) by adding time-dependent buffeting lift and 

moment per unit span, respectively, as follows: 

                                                                             (7) 

 

                                                                              (8) 
where cL (s) and cM (s) are time-dependent lift and moment 

coefficients and  v is the mean wind velocity. 

The span-wise integrals, namely CL(s), CM(s): 

 
                                                                            (9) 

 

               ./ !" � �
01

� 2/ �, !" ��01
�                (10) 

 

The equation for single-degree vertical motion with 4 � 5
6 7! 

4 ′′ - 289:94 ′:9�4 � ;6(
< =:>�∗@4 ′ - .0 !"@        (11) 

 

Or in adjusted notation 
                                                                              (12) 

 

Where                                                                   (13) 

 
CL(s) is stationary random, of power spectral density (K), and 

the definition is introduced: 

 

 
                                                                             (14) 

 

 

 

Then the power spectral density of ξ is given by 

 

                                                                            (15) 

 

 

Since        is experimentally obtainable from the 

ratio                , it is then possible to solve this for 

the value of γ1, and hence        (K) as in eq. (11). 

 

An alternative approach, if CL(s) is not steady but a 

transient (decaying or divergent) one, is to employ 

Fourier transforms              respectively of a selected 

portion of the motion ξ and input CL(s), hence:  

 % 7:" � 4/.0 
 
The non-dimensional dynamic equation for span wise section x 

of the full bridge is  

�"+2 4�:�  � - :��� 

 

= CD4 /  I 
s 
 [ KA2   

* Ө
 + KA3  

* Ө
 +CM (x,s)]   (16) 

where all K parameters are based on mean wind velocity  

v, cM (x,s)  the local randomly varying moment coefficient . 
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Unlike the flutter phenomenon, where the entire system acts 

concertedly at a single value of K = Kc, gust response occurs in 

several simultaneous modes 

ψi (x) each of which having a specifiable value K = Ki.   

Assuming that                      ψi 
2
 (x) dx  =  I 

 

 
The equation pertaining to mode i of the bridge becomes. 

  

 

 

 

 

                                                                             (17) 
The problem then devolves into determining the random force 

in eqn. (16) and its consequences and becomes.   

 

 

                                                                             (18) 
The spectrum of the amplitude of response ηi for the ith mode 

ψi (x) is then given by 

 

where,  

 

 

                                                                           (19) 

 

 

             

                                                                          (20) 
and β* (xq, K) is its complex conjugate. 

 

Since the sum of all modal responses constitutes the total 

responseθ, it is then necessary to assess Sθ (x, K) of θ (x) for 

all modal contributions at the given span-wise point x, to take 

into account all modal and cross-modal contributions. But it is 

likely for this fairly lowly-damped case that a good estimate 

can be made by taking the sum as squared modal contributions  

 

                                                                         (21) 
which then constitutes the result for the spectrum of response.  

Other details on estimated maximum of response, number of 

deflection excursions contributing to fatigue, etc. can be 

pursued by known techniques.  From the equations 7 to 21, it is 

possible to predict the buffeting response of a bridge 

analytically. 

 

IV. EXPERIMENTAL INVESTIGATIONS 

 

A model was built to a scale of 1:200 representing a 

240 m length of the bridge span. Well-seasoned teakwood was 

used to fabricate the model. Various components of the model, 

such as the main girder, longitudinal beam, cross beam, deck 

slab, foot path, hand railing, camber and fillet were all 

fabricated separately and carefully assembled to get the replica 

of the prototype. Two designs for the hand railings, one with 

an ornamental design and the other, a plain design fabricated 

using angle iron, are investigated. The important physical 

properties and dimensions of the model and were shown in 

Table 2. The ratio of flexural to torsional frequency (Nθ/ Nz) 

equals to 1.2 is maintained by adjusting the frequency of 

oscillation of the model with some limitations. The frequency 

and amplitude of oscillations were measured by means of 

accelerometers with preamplifier. The model frequencies and 

its damping were measured by giving an impulse and also by 

using an electro-dynamic shaker.  

 

Damping was measured by giving an impulse 

disturbance to the model and recording the decaying signal to 

arrive at the logarithmic decrement. Freeman, Fox and 

Partners (designers of the bridge) had specified a damping 

value  δs of 0.06 in both bending and torsion and a value close 

to this was obtained in flexure by adjusting the size of damper 

disc. The location of the damper disc on the longitudinal bar 

was then adjusted to obtain a torsional damping of nearly 0.06. 

A number of tests were conducted even at this lower value of 

damping i.e 0.03, as some bridges are known to possess such 

low values of damping.  

Measurements were made for vertical and torsional 

oscillations with and without live loads for the damping values 

of 0.06 and 0.03 at positive and negative angles of attack 

ranging from 0 to 7.5 degrees at intervals of 2.5 degrees. In the 

present investigation, a distinct single degree of freedom 

oscillation in the rolling mode has also been consistently 

observed. In configurations where torsional oscillation 

occurred, the rolling mode of instability was seen to occur 

almost immediately. The rolling mode of instability seen in 

sectional model tests may be described as due to the overtone 

flexural oscillation of the main span of the bridge. 

 
Table. 2 

S

N

o 

Proper ty  Scale  

Rat io  

Mode l 

Value  

Ful l  

Sca le 

Value  
1 Width  1 :10 0  0 .11m 1 0 .5 4m 

2  Ef fec t ive 

a r ea  of  cros s  

s ec t io n  

1 :10 0 2  5 .86 X10 - 4  

m2  

5 .865  m2  

3  Loca t ion of  

th e Neutr a l  

Ax is  be low 

top  of  the  

deck  

1 :10 0  0 .5135  cm 5 1 .3 5  cm 

4  Shear  center  

above  t op  of  

th e deck  

1 :10 0  0 .8 74  cm 87 .4  cm 

5  Weight  p er  

un i t  l en gth  

1 :10 0 2  2 .5  kg/m 25 040 

kg/m 
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5 

6 Mass  

mo ment  of  

i ner t ia  per  

u ni t  l en gth  

1 :1 00 4  0 .0025  

kg m2 /m  

25 3600 kg

m2 /m  

7 Freq uenc y of  

Osc i l l a t ion:  

a )  Ver t i ca l  

mo t ion  

b )  Tors io na

l  

 

6 :1  

6 :1  

 

6 .0  Hz  

7 .2  Hz  

 

1 .00  Hz 

1 .19  Hz 

8  N θ /N z  1 :1  1 .2  1 .2  

 
V. RESULTS AND DISCUSSIONS 

 

From the results of wind tunnel tests on the sectional model 

with various configurations, it is evident that corresponding 

full-scale values can be obtained by applying appropriate scale 

factors. With regard to the two flexural modes, the second 

flexural mode of 1.07 Hz was considered along with the 

torsional mode of 1.20 Hz to get the lowest value of Nθ/Nz for 

model simulation. However, since the oscillations of the 

model were uncoupled, oscillation in each of those modes had 

to be interpreted independently. The basic model, without any 

modifications, vibrates with a maximum amplitude of 1.61 

mm and with a wind speed of 15.5 m/s, the value of  δzx  was 

0.03 with angle iron hand railing. The central amplitude for 

the full-scale bridge turns out to be 64.4 mm. This amplitude 

in the full-scale structure occurring at a speed of 50 m/s is 

seen to be fairly large and remedial measures to reduce this 

amplitude would become inevitable. When the hand-railing is 

of the ornamental type, the model vibrates with more or less 

the same amplitude. The speed range for instability is also 

approximately the same. With the introduction of dashpots, 

the value of δ zx is raised to 0.06 and the maximum amplitude 

of the model with angle iron hand railing is brought down by 

about 40 percent. The vibration of the model with ornamental 

hand-railing is insignificant by the introduction of dashpots. 

It is seen that a positive angle of attack leads to 

slightly increased amplitude of oscillation, the speed range for 

instability being essentially unaffected. With a negative angle 

of attack the amplitude is reduced significantly and the speed 

for the inception of instability is also higher by about 40 

percent. Maximum amplitude of 1.97 mm was observed for 

the model with ornamental hand railing when the truck 

convoys were moving in the same direction on the leeward 

side and at 0.25 m from the centre. For the angle iron hand 

railing, the maximum amplitude was 0.82 mm, when the truck 

convoy was moving in the same direction, very close to the 

centre, on the windward side. The ranges of wind speed for 

instability in vertical motion were not affected by the presence 

of tank or truck as live loads. It is the amplitude of oscillation, 

which tended to be much more pronounced. 

The wind tunnel tests showed that the sectional 

model of the bridge oscillated in the torsional mode as the 

wind speed was increased beyond the range for instability in 

vertical motion. The sectional model with ornamental hand 

railing showed instability in torsion between wind speeds of 

30 m/s to 35 m/s. The maximum amplitude observed was 0.9
0
, 

when δθs was 0.03. There was a slight reduction in the 

amplitude; the value of δθs was raised to 0.06. With the 

introduction of the tank live load on the model with 

ornamental hand railing, the torsional amplitudes were 

pronounced. The maximum amplitude of 1.5
o
 occurred when 

the tank was on the windward side and 0.5 m from the centre. 

The smallest amplitude was 0.95
o
 and was realized with the 

tank on the leeward side and close to the centre. When the 

hand railing was of the angle iron type, it did not record in any 

measurable torsion. The maximum amplitude for this case was 

as small as 0.1
0
 when the tank was located on the windward 

side at 0.5 m from the centre.  

As the wind speed was increased beyond the range of 

torsional instability, it was found that the model was soon 

oscillating in the rolling mode. For the bare model with 

ornamental hand railing, the rolling oscillations started when 

the wind speed was 30 m/s and continued upto a wind speed 

of 40 m/s. The maximum rolling amplitude was 0.04°. With 

the introduction of dashpots, the maximum amplitude for both 

the types of hand railing was 0.02°. At a positive angle of 

attack of 10°, the rolling amplitude was 0.04° for the model 

with ornamental hand railing and dashpots. With the angle of 

attack at -10°, the amplitude came down to 0.02° and speed 

for the onset of instability raised by about 20 percent. 

 

VI. CONCLUSIONS 

 

The following conclusions are arrived at from the present 

study: 

1).From the results of the flutter test on the bridge model, it is 

observed that the model showed oscillation mainly in the 

bending mode and relatively weaker in the torsional mode. 

The oscillation tended to be larger at positive angles of attack 

and smaller at negative angles of attack, without any 

significant effect on the critical speed of the wind. 

2). The bridge deck is more susceptible to wind excited 

oscillations of high amplitudes under live loads. It is also 

observed that a rolling mode of instability occurs for long span 

cable stayed bridges. Further, coverage of the bottom of the 

deck proved to be the most effective modification in 

increasing the stability of the bridge in bending and rolling.  

3). While recording buffeting response of the bridge, it is 

observed that the torsional instability of a bridge is not 

affected by moderate turbulence. It is also observed that the 

component of wind, normal to the deck, governs the torsional 

instability and buffeting behaviour for the yawed wind attack.  
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