
 

 
International Journal of Ethics in Engineering & Management Education 

Website: www.ijeee.in (ISSN: 2348-4748, Volume 3, Issue 2, February 2016) 
 

23 

 A Study on Surface Instabilities in Newtonian and 

Non-Newtonian Fluids  
 

Shaik Kasimali 
Research scholar 

SunRise University-Alwar 

kasimalishaik@gmail.com 

 

Dr. Puneet Kumar 
Director at GIER, Gzb 

drkumarpuneet@gmail.com 

 

Abstract: - This paper on surface instability in Newtonian and 

non-Newtonian fluids. A first classification establishes fluids as 

compressible and incompressible, according to their response to 

an externally applied pressure. This paper is to introduce and to 

illustrate the frequent and wide occurrence of non-Newtonian 

fluid behavior in a diverse range of applications, both in nature 

and in technology. Representative examples of materials (foams, 

suspensions, polymer solutions and melts), which, under 

appropriate circumstances, display shear-thinning, shear-

thickening, visco-plastic, time-dependent and visco-elastic 

behaviour are presented. Each type of non-Newtonian fluid 

behaviour has been illustrated via experimental data on real 

materials. This is followed by a short discussion on how to 

engineer non-Newtonian flow characteristics of a product for its 

satisfactory end use by manipulating its microstructure by 

controlling physico-chemical aspects of the system. Finally, we 

touch upon the ultimate question about the role of non-

Newtonian characteristics on the analysis and modeling of the 

processes of pragmatic engineering significance. 

 

Key words:- Non Newtonian fluids, Newtonian Fluids, Surface 

instability, shear-thinning, shear-thickening, visco-plastic, and 

visco-elastic behavior.  

 

1. INTRODUCTION 

 

Most low molecular weight substances such as organic and 

inorganic liquids, solutions of low molecular weight inorganic 

salts, molten metal’s and salts, and gases exhibit Newtonian 

flow characteristics, [5] i.e., at constant temperature and 

pressure, in simple shear, the shear stress (σ) is proportional to 

the rate of shear (γ˙) and the constant of proportionality is the 

familiar dynamic viscosity (η). Such fluids are classically 

known as the Newtonian fluids, albeit the notion of flow and 

of viscosity predates Newton. For most liquids, the viscosity 

decreases with temperature and increases with pressure. For 

gases, it increases with both temperature and pressure. 

Broadly, higher is the viscosity of a substance, more resistance 

it presents to flow (and hence more difficult to pump). Table 

provides typical values of viscosity for scores of common 

fluids. As we go down in the table, the viscosity increases by 

several orders of magnitude, and thus one can argue that a 

solid can be treated as a fluid whose viscosity tends towards 

infinity, η → ∞ . Thus, the distinction between a fluid and a 

solid is not as sharp as we would like to think! Ever since the 

formulation of the equations of continuity (mass) and 

momentum (Cauchy, Navier-Stokes), the fluid dynamics of 

Newtonian fluids has come a long way during the past 300 or 

so years, albeit significant challenges especially in the field of 

turbulence and multi-phase flows still remain. The problem of 

thermal convection in fluids in porous medium is or 

considerable importance in geophysics, soil sciences, found 

water hydrology and astrophysics. The physical properties of 

comets, Meteorites and interplanetary dust strongly suggest 

the importance of porosity in astrophysical context 

[McDonnell (1978)]. The physics of flow through porous 

medium has been given in a [2] treatise by Scheidegger 

(1960). The Rayleigh instability of a thermal boundary layer 

in flow in porous medium is studied by Wooding (1960). Such 

problem arises in Oceanography, limnology and engineering. 

The idealization of uniform gravity assumed in theoretical 

investigations, although valid for laboratory purposes, can 

scarcely, be justified for large-scale convection phenomena 

occurring in atmosphere, the Ocean or mantle of the earth. It 

three becomes imperative to consider gravity as variable 

quantity varying with distance from surface or referee, print. 

G.K. Prndhan et, al (1989) studied the thermal instability of a 

fluid layer in a valuable gravitational field and found that 

variable gravity has destabilizing effect on the fluid layer. In 

the present paper an attempt has been Include to effect of 

variable gravity on the thermal instability or Maxwell visco-

elastic fluid in porous mediums. 

 

Formulation of Problem and Perturbation 

Equations  
Consider an infinite horizontal layer of Maxwell Visco-elastic 

fluid of thickness „d‟ bounded by plane z = 0 and z = d in 

porous medium of porosity � are medium permeability k1. The 

layer is heated from below such that a uniform temperature 

gradient � = � , where T is temperature. The system is acted 

upon by linear variable gravity force � 0,0,� � , where g(z) = 

g0 (1 + Mz) > 0, M is gravity parameter and g0 is the value of 

g at z = 0. Let �,,,,�,� and 	 be the pressure, density, 

temperature and thermal coefficient of expansion. Viscosity, 

kinematic viscosity and thermal diffusivity of fluid 

respectively.  

 

Non-Newtonian Fluid Behavior  
The simplest possible deviation from the Newtonian fluid 

behavior occurs when the simple shear data σ − γ˙ does not 

pass through the origin and/ or does not result into a linear 

relationship between σ and γ˙. Conversely, the apparent 

viscosity, de- fined as σ/γ˙, is not constant and is a function of 

σ or γ˙. Indeed, under appropriate circumstances, the apparent 
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viscosity of certain materials is not only a function of flow 

conditions (geometry, rate of shear, etc.), but it also depends 

on the kinematic history of the fluid element under 

consideration. It is convenient, though arbitrary (and probably 

unscientific too), to group such materials into the following 

three categories:  

 

1. Systems for which the value of γ˙ at a point within the fluid 

is determined only by the current value of σ at that point; these  

substances are variously known as purely viscous, inelastic, 

time-independent or generalized Newtonian fluids (GNF). 

 

2. Systems for which the relation between σ and γ˙ shows 

further dependence on the duration of shearing and kinematic 

history; these are called time-dependent fluids, and finally. 

 

3. Systems which exhibit a blend of viscous fluid behavior and 

of elastic solid-like behaviour. For instance, this class of 

materials shows partial elastic recovery, recoil, creep, etc. 

Accordingly, these are called visco-elastic or elastico-viscous 

fluids. As noted earlier, the aforementioned classification 

scheme is quite arbitrary, though convenient, because most 

real materials often display a combination of two or even all 

these types of features under appropriate circumstances. For 

instance, it is not uncommon for a polymer melt to show time-

independent (shear-thinning) and visco-elastic behavior 

simultaneously and for a china clay suspension to exhibit a 

combination of time-independent (shear-thinning or shear-

thickening) and time-dependent (thixotropic) features at 

certain concentrations and /or at appropriate shear rates. 

Generally, it is, however, possible to identify the dominant 

non Newtonian aspect and to use it as basis for the subsequent 

process calculations. Each type of non- Newtonian fluid 

behavior is now dealt with in more detail. 

 

2. LITERATURE REVIEW 

 

Kafoussias and Williams et.al (2014) studied, using 

an efficient numerical technique, the effect of a temperature-

dependent viscosity on an incompressible fluid in steady, 

laminar, free-forced convective boundary layer flow over an 

isothermal vertical semi-infinite flat plate. Kozhhoukharova et 

al. (2014) examined the influence of a temperature-dependent 

viscosity on the axisymmetric steady thermo capillary flow 

and its stability with respect to non-axisymmetric 

perturbations by means of a linear stability analysis. Horne 

and Sullivan et.al (2014) examined the effect of temperature-

dependent viscosity and thermal expansion coefficient on the 

natural convection of water through permeable formations. 

Richter et al. (2013) showed, by an experiment with 

temperature-dependent viscosity ratio as large as 106 , the 

existence of subcritical convection of finite amplitude near the 

critical Rayleigh number. Busse and Frick et.al (2013) 

analyzed the problem of RBC with linear variation of viscosity 

and showed an appearance of square pattern for a viscosity 

ratio larger than 2. Severin and Herwig et.al (2013) 

investigated the variable viscosity effect on the onset of 

instability in the RBC problem. Palm et.al (2012) showed that 

for a certain type of temperature-dependence of viscosity, the 

critical Rayleigh number and the critical wave number are 

smaller than those for constant viscosity and explained the 

observed fact that steady hexagonal cells are formed 

frequently at the onset of convection. Perez-Garcia and 

Carneiro (2012) analyzed the effects of surface tension and 

buoyancy on the convective instability in a layer of fluid with 

a deformable free surface. Their analysis is restricted to fixed 

values of a Prandtl number and Biot number in order to 

determine the role of the Crispation number on convection. 

Maxwell et.al (2011) had published the famous “velocity slip 

boundary condition”.  

 

Moffatt et.al (2010) first derived the value of the maximum 

amount of fluid a rotating cylinder can sustain. Brookfield 

Engineering Labs Inc. et.al (2010a) emphasized that by 

measuring the rheology parameters of fluids much useful 

behavioral and predictive information can be obtained. 

Brookfield engineering labs inc. et.al (2010a) defined that the 

viscosity is the measure of the internal friction of a fluid. 

Chhabra, et.al (2010) in practice, apparent viscosity in some 

fluids may depend on the rate of shear and also the time for 

which the fluid has been subjected to shearing. Gilbert et al 

(2010) proposed a three parameter to correlate the drag 

coefficient and the particle Reynolds number. Lauga & Stone 

et.al (2003) say „when the fluid does not completely wet an 

atomically smooth substrate, then might expect (even rarefied 

gases or liquids), or at least it has been conjectured, that the 

flow may exhibit expect, or at least it has been conjectured, 

that may exhibit some manifestations of microscopic slip‟. 

Hossain et al. (2002) analyzed the effect of temperature-

dependent viscosity on natural convection flow from a vertical 

wavy surface using an implicit finite difference method. 

Takashima (2001, 2002) examined the effect of a free surface 

deformation on the onset of stationary and oscillatory surface 

tension driven instability using linear stability theory. 

 

Time-Independent Fluid Behavior  
As noted above, in simple unidirectional shear, this sub-set of 

fluids is characterized by the fact that the current value of the 

rate of shear at a point in the fluid is determined only by the 

corresponding current value of the shear stress and vice versa. 

Conversely, one can say that such fluids have no memory of 

their past history. Thus, their steady shear behavior may be 

described by a relation of the form,  

 

γyx = f(σyx)  

Or, its inverse form,  

σyx = f −1 (γyx)  

Depending upon the form of equation, three possibilities exist: 

1. Shear- thinning or pseudo plastic behavior. 

2. Visco-plastic behavior with or without shear-thinning 

behavior. 

 3. Shear- thickening or dilatant behavior.  
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Fig-1. shows qualitatively the flow curves (also called 

rheograms) on linear coordinates for the above- noted three 

categories of fluid behavior; the linear relation typical of 

Newtonian fluids is also included in Fig. Fig-1. Qualitative 

flow curves for different types of non Newtonian fluids.

 
FIG-1: Shear rate vs Shear Stress 

 

Shear-Thinning Fluids This is perhaps the most widely 

encountered type of time-independent non-Newtonian fluid 

behavior in engineering practice. It is characterized by an 

apparent viscosity η (defined as σyx/γ˙yx) which gradually 

decreases with increasing shear rate. In polymeric systems 

(melts and solutions), at low shear rates, the apparent viscosity 

approaches a Newtonian plateau where the viscosity is 

independent of shear rate (zero shear viscosity, η0).  

 
Furthermore, only polymer solutions also exhibit a similar 

plateau at very high shear rates (infinite shear viscosity, η∞), 

i.e., 

 
In most cases, the value of η∞ is only slightly higher than the 

solvent viscosity ηs . Fig. 5 shows this behavior in a polymer 

solution embracing the full spectrum of values going from η0 

to η∞ . Obviously, the infinite-shear limit is not seen for 

polymer melts and blends, or foams or emulsions or 

suspensions. Thus, the apparent viscosity of a pseudoplastic 

substance decreases with the increasing shear rate, as shown in 

Fig. 6 for three polymer solutions where not only the values of 

η0 are seen to be different in each case, but the rate of 

decrease of viscosity with shear rate is also seen to vary from 

one system to another as well as with the shear rate interval 

considered. Lastly, the value of shear rate marking the onset of 

shear-thinning is influenced by several factors such as the 

nature and concentration of polymer, the nature of solvent, etc 

for polymer solutions and particle size shape, concentration of 

solids in suspensions, for instance. Therefore, it is impossible 

to suggest valid generalizations, but many polymeric systems 

exhibit the zero-shear viscosity region below γ˙ < 10−2 s −1 . 

Usually, the zero-shear viscosity region expands as the 

molecular weight of polymer falls, or its molecular weight 

distribution becomes narrower, or as the concentration of 

polymer in the solution is reduced. 

 
 

Fig-2. Demonstration of zero shear and infinite shear viscosities for a polymer 

solution 

 

Power Law or Ostwald de Waele Equation  

 

Often the relationship between shear stress (σ) − shear rate(γ˙) 

plotted on log-log co-ordinates for a shear-thinning fluid can 

be approximated by a straight line over an interval of shear 

rate, i.e.,  

 

σ = m(γ˙)n  

or, in terms of the apparent viscosity,  

η = m(γ˙)n−1 

 

Obviously, 0 < n < 1 will yield (dη/dγ˙) < 0, i.e., shear-

thinning behaviour fluids are characterized by a value of n 

(power-law index) smaller than unity. Many polymer melts 

and solutions exhibit the value of n in the range 0.3-0.7 

depending upon the concentration and molecular weight of the 

polymer, etc. Even smaller values of power-law index 

(n∼0.1−0.15) are encountered with fine particle suspensions 

like kaolin-in-water, bentonite-in-water, etc. Naturally, smaller 

is the value of n, more shear-thinning is the material. The 

other constant, m, (consistency index) is a measure of the 

consistency of the substance. Although, eq. offers the simplest 

approximation of shear-thinning behaviour, it predicts neither 

the upper nor the lower Newtonian plateaus in the limits of γ˙ 

→ 0 or γ˙ → ∞. Besides, the values of m and n are reasonably 

constant only over a narrow interval of shear rate range 

whence one needs to know a priori the likely range of shear 

rate to be encountered in an envisaged application. 

 



 

 
International Journal of Ethics in Engineering & Management Education 

Website: www.ijeee.in (ISSN: 2348-4748, Volume 3, Issue 2, February 2016) 
 

26 

3. EXPERIMENT SETUP AND TESTING METHOD 

 

The experiment utilizes an adaptation of the filament 

stretching rheometer to implement a modification of the 

probe-tack adhesion test for the purpose of investigating 

endplate instabilities in mobile viscoelastic polymer solutions. 

The standard probe-tack test, which was discussed briefly in 

the last chapter, incorporates a flat probe that can be retracted 

from an adhesive substrate at a known rate while recording the 

maximum normal load. The current experiment deviates from 

the probe-tack test in the following ways:  

1) Due to the mobile nature of the test fluids, a cylindrical 

sample having the same 5mm diameter as the probe is used 

rather than an infinite substrate of adhesive material;  

2) The velocity profile is exponential in time, rather than the 

constant 10 mm/s back-off velocity specified by ASTM 

D2979-95. The aim of using an exponential velocity profile is 

to provide a constant strain rate within the elongating sample. 

This is a fundamental requirement in extensional rheometry 

and in the current case, it is required in order to induce a 

strongly strain hardening elastic response in the viscoelastic 

test fluids;  

3) The test probe material is glass rather than the polished 

stainless steel called for by the standard. This is because the 

implementation of the optical device for viewing the sample 

from beneath the endplate required that a transparent material 

be used for the lower endplate. A matching glass optical 

window was used for the upper endplate to ensure flow 

symmetry at low plate separation distances and to provide 

symmetrical conditions for the occurrence of adhesive failure 

at the end of stretching. The fluid sample is initially in the 

shape of a cylindrical plug and is held between two rigid 

circular endplates by surface tension. The upper endplate is 

attached to the linear motor, and can move away from the 

stationary and mechanically isolated lower endplate at a 

programmable rate. At the start of an experiment the plates 

begin to separate, thus deforming the fluid sample. Depending 

upon the initial experiment parameters, a slender fluid 

filament may form. If a stable filament does develop, then the 

flow near the filament midpoint will be a nearly pure uniaxial 

extensional flow if an exponential profile is chosen. This 

shearfree flow is the key the success of filament stretching 

rheometry.  

 

4. EXPERIMENTAL CONDITIONS 
 

The experiments were conducted in a 26-m long, 0.6-m wide 

and 0.5-m high tilting flume with glass sided walls. The 

original channel bed was made of steel plate and was 

hydraulically smooth even for flow of water and the bed slope 

can be adjusted in the range 0-0.05. Clay suspensions were 

recalculated through the channel. The flow rate was controlled 

by means of an inlet valve and measured by using a magnetic 

flow meter. For supercritical flow of Froude number larger 

than one, the tailgate was open al-lowing How out off freely. 

For subcritical How, the flow depths were adjusted by means 

of an overflow weir at the downstream end of the channel to 

achieve uniform flow conditions. The water depth was 

measured by using scaling arrow with digital readout to within 

0.1mm at worst. Except for a few experiment the depth of the 

How was in a range from 1 to 12 cm. which yielded width to 

depth ratios larger than 5:1. so that the How was effectively 

two dimensional and five from wall effects in the central zone 

of the channel.  

 

The clay material has a density of 2.68 g/cm3 and median 

diameter of 0.002 mm. The main mineral compositions were 

montmorillonite, quartz and calcite. Clay and tap water was 

well mixed and the suspensions behaved like a viscous liquid 

rather than solid water mixture. Clay concentrations of the 

samples were analysed by using picnometer. The 

measurement error of concentration was 0.0004. The 109  

pH value of the suspensions. The rheologic behavior of the 

suspensions was studied with a rotating coaxial cylinder 

viscometer (Wang. Larsen and Xiang, 1994). Samples of clay 

suspensions were taken from the flume and tested with the 

viscometer. For concentrations of less than 1.6%, the 

suspension exhibits very small yield stress and can be 

regarded still Newtonian but with high viscosity. For higher 

concentrations, it showed obvious yield stress and roughly 

followed the Bingham theological model given by Eq. The 

temperature of water and clay suspensions was maintained in 

the range 19-220C for all experiments. The effect of the 

variation in temperature on the theological properties was 

negligible in which ��
=12000 Pa and (a is the viscosity of 

clear water, Cv is the volume concentration of clay. A video 

camera and a sounding meter were used to record the 

development of the waves. The velocity was measured by 

using a one component pressure veloeimeter. The tip of the 

sensor is 1 mm in diameter. The probe size, working principle, 

calibration and relative error of measurement are presented in 

a literature (Wang el al., 1995). The veloeimeter can measure 

turbulence with sampling frequency 300 Hz. All the flows 

were laminar because the clay suspensions were high viscous. 

 

5. EFFECTS OF SURFACE TENSION ON THE 

STABILITY OF TWO SUPERPOSED NEWTONIAN 

FLUIDS  

 

This chapter deals with the effects of surface tension on she 

instability of the interface separating two superposed 

Newtonian fluids immersed in a two dimensional horizontal 

magnetic field. Employing the normal mode technique the 

linearized perturbation equations have been solved and the 

dispersion relation has been derived. For several values of the 

physical parameters involved, the dispersion relation has been 

solved numerically and it found that the surface tension 

newtonian and non-newtonain all suppress the Instability of 

i/se system.  A detailed account of the various investigation in 

hydrodynamics and Hydromagnetics of the Rayleigh Taylor 

insatiability, which arises from the character or the 

equilibrium or a layer of a heterogeneous fluid and or which 

the two superposed lasers of homogeneous fluids is a 

particular case has been given by Chandrasekhar. Bhatia has 
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studied the Rayleigh-Taylor instability of two Superposed 

electrically conducting viscous fluids in a horizontal magnetic 

field.  Rayleigh-Taylor instability has been studied by several 

researchers under varying aspects. Bhatia and Chhonkar have 

studied the stability or superposed viscous rotating plasma m 

the presence or finite Larmor Radius (FLR) effects while 

Hooper and Grimshaw have examined the nonlinear instability 

of the interface between two fluids Gupta and Bhatia have 

studied the stability of plane interface between two viscous 

superposed partially ionized plasmas of uniform densities in a 

uniform two dimensional horizontal magnetic Filed Srivastava 

and Khare have Investigated the Rayleigh-Taylor instability of 

two viscous superposed conducting fluids in a vertical 

magnetic field, Osorozco has studied the Rayleigh-Taylor 

instability of a two fluid layer under a general rotational field 

and a horizontal magnetic field Allah IMI has investigated the 

effects of surface tension and heat and mass transfer on the 

instability of two steaming superposed fluids. All the above 

investigations have been carried out for the Newtonian fluids. 

Since visco-elastic fluids play an important role in industrial 

applications. Sharma and Kumar have studied the Rayleigh-

Taylor instability of two superposed conducting Walter‟s B‟ 

etastico-viscous fluids in 2-D magnetic field, Recently Kitan 

and Bhatia 1101 have stndied the stability of two superposed 

visco-elastic fluids through porous medium. In both these 

studies the effect of surface tension has not been included As 

the forces arising form surface tension where the density 

changes discontinuously play an important role, it would 

therefore be of interest to investigate the effects of surface 

tension on the Rayleigh-Taylor instability of two superposed 

conducting Walters B‟ newtonian fluids This aspect forms the 

basis of this paper where in the fluids are permeated by n 

uniform two dimensional horizontal magnetic field .We have 

carried out the stability analysis for two fluids of equal 

kinematic newtonian and non-newtonian but different 

densities. 

 

 Formulation of The Problem And Perturbation Equations  
We consider the motion or an incompressible infinitely 

conducting Walters BrcIastico-visc0us fluid of enable density 

The fluid is assumed to be immersed in a uniform magnetic 

field (H.H.O) and is arranged in horizontal strata  The relevant 

lineanzed perturbation equations are  

 

 

 

 

 
Where  

 
denote the perturbations in velocity density � presume p. and 

magnetic field � respectively Here T, �,′ and � = (0, 0, -g) arc 

respectively the surface tension, co-efficient of viscosity, 

coefficient of visco elasticity and acceleration due to gravity 

In above equations �(�−��) denotes Dirac‟s � function, � = 

(x, y, z) and D = d/dz Equation ensures that the density of ever 

panicle remains unchanged as we follow it with its motion. 

Analyzing in terms of normal modes, we assume that the 

perturbed quantities have the space (x, y, z) and time (t) 

dependence of the form 

 
Where f(z) is some function of z, k and k,, are the horizontal 

numbers (k2 = k2x + k2x) and n is the growth rate of harmonic 

disturbance. For the perturbation of the form equations 

become 

 
Eliminating some of the variables from the above equations. 

Obtain following equation in 
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This equation holds for a fluid in which density �, viscosity � 

and viscoclasticity �′.  

Two Superposed Walters B’ Fluids Separated By a Horizontal, 

Boundary  Consider now the case when two superposed 

Walters B ‟ fluids of unfound densities � and �′ , uniform 

viscosities � and �2 and uniform viscoelastictics p, and 

occupy the regions z < 0 and z > 0 and are separated b a 

horizontal boundary at z = 0. Therefore in both regions z < 0 

and z> 0 are equation becomes 

 
we can write the solutions of equation appropriate to the two 

regions, as 

 
where A1 B1,. A2, B2 arc constants of integration, and q1 and 

q2 arc the positive square roots of equation for the two 

regions. It is assumed here that q1 and q2 are so defined that 

their real parts arc positive. 

 

Boundary Conditions  

The solutions must satisfy four boundary conditions. 

The three conditions to be satisfied at the interface z = 0 are 

that 

 
must be Continuous. If we integrate equation across the 

interface, we obtain the required fourth condition as 

 
 

where w0 and (Dw)0 are unique values of these quantities at z 

= 0 On applying the conditions to the solutions, we obtain four 

relations in A1, B1, A2 and B2, 

 
 

On eliminating the constants A1, B1, A2, B2 and evaluating 

the determinate of the given matrix of the coefficients in 

equations we obtain characteristic equation 

 
 

 

 being Alfven velocity vector � being angle which k makes 

with K-axis.  The dispersion relation is quite complex, 

particularly as q1 and q2, involve square roots. We, therefore 

can out the stability anal‟ sis for large viscosity and large 

viscoclasticity for then we can write q1 and q2 as 

 
Substituting the values of q1 and q2, we get the dispersion 

relation which involves the values of the parameters �, �, �′ , 

� � . corresponding to two fluids. As we wish to obtain 
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qualitatively the influence of these effects on the instability of 

the system we set �1 = �2= �, �1 ′ = �2 ′ = �′  

For the mathematical simplicity. The 

dispersion relation is then, 

 
In the absence of the surface tension (T = 0), we recover the 

dispersion relation obtained earlier by Sharma and Kumar and 

if �′ is also zero, we obtain the dispersion relation derived by 

Bhatia. 

 

6. DISCUSSION 

 

The equation is quite complex In order to studs the 

effects of arouse physical parameters on the growth rate or 

unstable modes, the numerical solutions of this equation have 

been sought to locate the values or n (positive real part) 

against wave number k. for several values of the parameters 

involved The numerical calculations are presented in figures. 

where we have taken a potentially unstable arrangement b 

taking α1 = 0.25, α2 = 0.75 for fixed VA = 0.5, � = 450, α2 > 

α1 

 
Fig-3: effects of surface tension 

 

Variation of the growth rate n (positive real part) against the 

wave number k for different values of surface tension T taking 

α1 = 0.25, α2 = 0.75 & � = 3.0, �′=0.2, VA = 0.5, � = 450, 

Figure 

 
Fig-4: effects of viscosity 

Variation of the growth rate n (positive real part) against the 

wave number k for different values or viscosity r taking α1 = 

0.25, α2 = 0.75 & � = 4.0, �′=0.2, VA = 0.5, � = 450 Figure.  

 
Fig-5: effects of viscoelasticity 

 

Variation of the growth rate n (positive real part) against the 

wave number k for different values of newtonian (y‟) taking 

α1 = 0.25, α2 = 0.75 & � = 3.0, �=4.0 VA = 0.5, � = 450 

Figure. It is seen from the about figures that the growth rate n 

decreases as (surface tension), � (kriematic visco-elasticity) 

and �′ (kinematic visco-elasticity) increase of the same k 

showing thereby the character of these effects.  The findings 

are in agreement with the Instigations done earlier. We may 

thus cm dude that the surface tension as well as Newtonian 

and non-Newtonian all suppress the instability of the system. 

 

7. CONCLUSIONS 

 

Non-Newtonian laminar flow exhibits free surface instability, 

such as the river clogging in the hyper-concentrated flows, 

intermittent viscous debris flows and fluctuation in mudflows. 

Theoretical analysis from the equation of motion incorporating 

the non-Newtonian nature of the fluid demonstrated that the 

free surface instability is essentially caused by the yield stress. 

Two dimensionless numbers, Sy and Syis, representing the 

effects of yield stress and viscosity are calculated and 

compared for various flows. The free surface is unstable and 

roll waves may develop even at constant incoming flow rate if 

S is much larger than Syis and is stable if Sy is smaller than 

Syis Experiments show that river clogging occurs if the 

driving shear stress is nearly equal to the yield stress, a 

perturbation wave may grow up in non-Newtonian laminar 

flow if Sy is large, and a series of roll waves may develop if 

Sy is even larger. The experimental results agree well with the 

theoretical formula showing exponential law of growth of 

wave height. The growth rate of wave height depends 

essentially on the parameter SN. The larger is the parameter 

Sy the higher is the growth rate and the higher are the waves.  

The effect of the solid layer deformability on the free surface 

instability in liquid film flow down an inclined plane lined 

with a soft solid layer was analyzed first using a long wave 

asymptotic analysis, and then using a numerical solution of the 

governing stability equations. In the absence of the soft solid 

layer, the liquid film flow undergoes long wave instability due 
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to fluid inertia. The present asymptotic results show that the 

effect of the solid layer appears at the same order [O (k)] as 

the destabilizing effect of fluid inertia, but the deformability of 

the solid layer always has a stabilizing effect on the free-

surface instability in the long-wave limit. Physically, at 

leading order in the asymptotic analysis, the normal and 

tangential fluid velocity fields satisfy the no slip condition as 

in a rigid inclined plane, and so the leading-order wave speed 

c (0) remains the same as in a rigid inclined plane. However, 

the leading-order fluid velocity field exerts a tangential stress 

on the solid layer, causing a deformation in the solid. This 

leading-order deformation in the solid layer affects the first 

correction to the fluid velocity field, thereby qualitatively 

altering the nature of the free surface instability. For a fixed 

value of Re and the inclination angle β, the free-surface 

instability is stabilized when =Va�/(GR) increases beyond a 

critical value. The long wave asymptotic results are further 

extended to finite wavelengths using a numerical solution of 

the stability equations. In general, this shows that the 

suppression of the free-surface instability continues to finite 

wavelengths. However, an increase in Γ substantially away 

from the value required for stabilization of the free-surface 

instability results in destabilization of either the liquid-solid 

interfacial mode or the free surface interfacial mode at finite 

wavelengths. Representative numerical results presented for a 

variety of parameter regimes indicate, nevertheless, that there 

exists a wide range of values of typically two orders of 

magnitude where both the interfacial modes are stabilized at 

all wave numbers. Furthermore, the suppression of instability 

for all wavelengths is found to be valid only for Re~O(1); 

when the Reynolds number is increased to 10 (for = �/ 4, it 

was found that there was always a finite-wavelength 

instability induced by the deformable solid layer. There are 

several implications from the present study for future 

experimental investigations. First, as discussed, the predicted 

stabilization can be realized in experiments involving the flow 

of viscous liquids viscosity1 − 10 Pa s past a soft elastomeric 

solid layer shear modulus104 Pa. Secondly, by decreasing the 

angle of inclination, it is possible to verify the destabilizing 

effect of solid layer deformability on the free-surface 

instability at finite wavelengths, when there is no long-wave 

instability in liquid flow down a rigid inclined plane. Thirdly, 

while the present study was restricted to the realm of linear 

stability, the nonlinear dynamics of liquid flow past an 

inclined plane lined with a soft solid layer could also 

potentially be qualitatively different from that of a rigid 

inclined plane. For example, it might be expected that the 

nonlinear evolution of the finite wavelength instability due to 

the deformability of the solid layer could be very different 

from that of the long-wave instability of liquid flow down a 

rigid inclined plate. This is an issue that is worth studying in 

future experimental and theoretical investigations. In 

conclusion, the present study predicts a discernible 

consequence of the elasto hydrodynamic coupling between the 

liquid flow and the deformation in the soft solid on the free-

surface instability of falling liquid films which can be readily 

tested by experiments.  

The filament stretching apparatus built by Anna has been 

modified in order to test mobile fluids in a manner quite 

similar to the probe-tack test used to test pressure-sensitive 

adhesives. The resulting experiment permits a very thin layer 

of a test fluid to be stretched at a preprogrammed rate while 

measuring the axial force as a function of time, or strain. In 

addition, a special endplate setup allows the fluid sample to be 

viewed from beneath and images are recorded with CCD 

camera. The dynamic response times of the linear motor and 

the force transducer were characterized experimentally. It was 

found that when these transient effects were accounted for in 

the measured experimental force data, the data matched the 

theoretical prediction of the Reynolds lubrication theory very 

well. It is concluded that the apparatus is well suited for the 

measurements undertaken in this thesis. The current 

experiments are intended to investigate flow instabilities that 

occur during stretching, and for these experiments, three 

model fluids were chosen.  
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