

International Journal of Ethics in Engineering & Management Education

Website: www.ijeee.in (ISSN: 2348-4748, Volume 4, Issue 5, May 2017)

1

Cloud Database Services with Data Confidentiality

and Possibility of Executing Concurrent

Operations on Encrypted Data

Mr. J. Sagar Babu, Asst. Prof

Dept. of CSE,

Princeton College of Engineering &

Tech, Hyderabad, India

Mr. Yakhoob, Asst. Prof

Dept. of CSE,

Princeton College of Engineering &

Tech, Hyderabad, India

Mr. E. Laxman, Asst. Prof

Dept. of CSE,

Princeton College of Engineering &

Tech, Hyderabad, India

Abstract— Placing critical data in the hands of a cloud

provider should come with the guarantee of security and

availability for data at rest, in motion, and in use. Several

alternatives exist for storage services, while data confidentiality

solutions for the database as a service paradigm are still

immature. We propose a novel architecture that integrates cloud

database services with data confidentiality and the possibility of

executing concurrent operations on encrypted data. This is the

first solution supporting geographically distributed clients to

connect directly to an encrypted cloud database, and to execute

concurrent and independent operations including those

modifying the database structure. The proposed architecture has

the further advantage of eliminating intermediate proxies that

limit the elasticity, availability, and scalability properties that are

intrinsic in cloud-based solutions. The efficacy of the proposed

architecture is evaluated through theoretical analyses and

extensive experimental results based on a prototype

implementation subject to the TPC-C standard benchmark for

different numbers of clients and network latencies.

Index Terms— security, confidentiality, SecureDBaaS,

database

I. INTRODUCTION

IN a cloud context, where critical information is placed in

infrastructures of untrusted third parties, ensuring data

confidentiality is of paramount importance [1], [2]. This

requirement imposes clear data management choices:

original plain data must be accessible only by trusted parties

that do not include cloud providers, intermediaries, and

Internet; in any untrusted context, data must be encrypted.

Satisfying these goals has different levels of complexity

depending on the type of cloud service. There are several

solutions ensuring confidentiality for the storage as a service

paradigm (e.g., [3], [4], [5]), while guaranteeing

confidentiality in the database as a service (DBaaS) paradigm

[6] is still an open research area. In this context, we propose

SecureDBaaS as the first solution that allows cloud tenants to

take full advantage of DBaaS qualities, such as

availability, reliability, and elastic scalability, without

exposing unencrypted data to the cloud provider.

The architecture design was motivated by a threefold goal:

to allow multiple, independent, and geographically distributed

clients to execute concurrent operations on encrypted data,

including SQL statements that modify the database structure;

to preserve data confidentiality and consistency at the client

and cloud level; to eliminate any intermediate server between

the cloud client and the cloud provider. The possibility of

combining availability, elasti-city, and scalability of a typical

cloud DBaaS with data confidentiality is demonstrated

through a prototype of SecureDBaaS that supports the

execution of concurrent and independent operations to the

remote encrypted database from many geographically

distributed clients as in any unencrypted DBaaS setup. To

achieve these goals, SecureDBaaS integrates existing

cryptographic schemes, isolation mechanisms, and novel

strategies for management of encrypted metadata on the

untrusted cloud database. This paper contains a theoretical

discussion about solutions for data consistency issues due to

concurrent and independent client accesses to encrypted data.

In this context, we cannot apply fully homomorphic

encryption schemes [7] because of their excessive

computational complexity.

The SecureDBaaS architecture is tailored to cloud

platforms and does not introduce any intermediary proxy or

broker server between the client and the cloud provider.

Eliminating any trusted intermediate server allows

SecureDBaaS to achieve the same availability, reliability, and

elasticity levels of a cloud DBaaS. Other proposals (e.g., [8],

[9], [10], [11]) based on intermediate server(s) were

considered impracticable for a cloud-based solution because

any proxy represents a single point of failure and a system

bottleneck that limits the main benefits (e.g., scalability,

availability, and elasticity) of a database service deployed on a

cloud platform. Unlike SecureDBaaS, architectures relying on

a trusted intermediate proxy do not support the most typical

cloud scenario where geographically dispersed clients can

concurrently issue read/write operations and data structure

modifications to a cloud database.

A large set of experiments based on real cloud platforms

demonstrate that SecureDBaaS is immediately applicable to

any DBMS because it requires no modification to the cloud

database services. Other studies where the proposed

architecture is subject to the TPC-C standard benchmark for

different numbers of clients and network latencies show that

International Journal of Ethics in Engineering & Management Education

Website: www.ijeee.in (ISSN: 2348-4748, Volume 4, Issue 5, May 2017)

2

the performance of concurrent read and write operations not

modifying the SecureDBaaS database structure is comparable

to that of unencrypted cloud database. Workloads including

modifications to the data-base structure are also supported by

SecureDBaaS, but at the price of overheads that seem

acceptable to achieve the desired level of data confidentiality.

The motivation of these results is that network latencies,

which are typical of cloud scenarios, tend to mask the

performance costs of data encryption on response time. The

overall conclusions of this paper are important because for the

first time they demonstrate the applicability of encryption to

cloud database services in terms of feasibility and

performance.

 The remaining part of this paper is structured as follows:

Section 2 compares our proposal to existing solutions related

to confidentiality in cloud database services. Sections 3 and 4

describe the overall architecture and how it supports its main

operations, respectively. Section 5 reports some experimental

evaluation achieved through the implemented prototype.

Section 6 outlines the main results. Space limitation requires

us to postpone the assumed security model in Appendix A,

which can be found on the Computer Society Digital Library

athttp://doi. ieeecomputersociety.org/10.1109/TPDS.2013.154,

to de-scribe our solutions to concurrency and data consistency

problems in Appendix B, available in the online supple-mental

material, to detail the prototype architecture in Appendix C,

available in the online supplemental material.

II. RELATED WORK

SecureDBaaS provides several original features that

differentiate it from previous work in the field of security for

remote database services.

• It guarantees data confidentiality by allowing a cloud

database server to execute concurrent SQL operations

(not only read/write, but also modifications to the

database structure) over encrypted data.

• It provides the same availability, elasticity, and

scalability of the original cloud DBaaS because it does

not require any intermediate server. Response times are

affected by cryptographic overheads that for most SQL

operations are masked by network latencies.

• Multiple clients, possibly geographically distributed, can

access concurrently and independently a cloud database

service.

• It does not require a trusted broker or a trusted proxy

because tenant data and metadata stored by the cloud

database are always encrypted.

• It is compatible with the most popular relational database

servers, and it is applicable to different DBMS

implementations because all adopted solutions are

database agnostic.

Cryptographic file systems and secure storage solutions

represent the earliest works in this field. We do not detail the

several papers and products (e.g., Sporc [3], Sundr [4], Depot

[5]) because they do not support computations on encrypted

data.

Different approaches guarantee some confidentiality (e.g.,

[12], [13]) by distributing data among different providers and

by taking advantage of secret sharing [14].

In such a way, they prevent one cloud provider to read its

portion of data, but information can be reconstructed by

colluding cloud providers. A step forward is proposed in [15],

that makes it possible to execute range queries on data and to

be robust against collusive providers. SecureDBaaS differs

from these solutions as it does not require the use of multiple

cloud providers, and makes use of SQL-aware encryption

algorithms to support the execution of most common SQL

operations on encrypted data.

SecureDBaaS relates more closely to works using

encryption to protect data managed by untrusted databases. In

such a case, a main issue to address is that cryptographic

techniques cannot be naively applied to standard DBaaS

because DBMS can only execute SQL operations over

plaintext data.

III. ARCHITECTURE DESIGN

SecureDBaaS is designed to allow multiple and independent

clients to connect directly to the untrusted cloud DBaaS

without any intermediate server. Fig. 1 describes the overall

architecture. We assume that a tenant organization acquires a

cloud database service from an untrusted DBaaS provider. The

tenant then deploys one or more machines (Client 1 through

N) and installs a SecureDBaaS client on each of them. This

client allows a user to connect to the cloud DBaaS to

administer it, to read and write data, and even to create and

modify the database tables after creation.

Fig.1. SecureDBaaS architecture

We assume the same security model that is commonly

adopted by the literature in this field (e.g., [8], [9]), where

tenant users are trusted, the network is untrusted, and the

cloud provider is honest-but-curious, that is, cloud service

operations are executed correctly, but tenant information

confidentiality is at risk. For these reasons, tenant data, data

International Journal of Ethics in Engineering & Management Education

Website: www.ijeee.in (ISSN: 2348-4748, Volume 4, Issue 5, May 2017)

3

structures, and metadata must be encrypted before exiting

from the client. A thorough presentation of the security model

adopted in this paper is in Appendix A, available in the online

supplemental material.

The information managed by SecureDBaaS includes

plaintext data, encrypted data, metadata, and encrypted

metadata. Plaintext data consist of information that a tenant

wants to store and process remotely in the cloud DBaaS. To

prevent an untrusted cloud provider from violating

confidentiality of tenant data stored in plain form,

SecureDBaaS adopts multiple cryptographic techniques to

transform plaintext data into encrypted tenant data and

encrypted tenant data structures because even the names of the

tables and of their columns must be encrypted. SecureDBaaS

clients produce also a set of metadata consisting of

information required to encrypt and decrypt data as well as

other administration information. Even metadata are encrypted

and stored in the cloud DBaaS.

SecureDBaaS moves away from existing architectures that

store just tenant data in the cloud database, and save metadata

in the client machine [9] or split metadata between the cloud

database and a trusted proxy [8]. When considering scenarios

where multiple clients can access the same database

concurrently, these previous solutions are quite inefficient. For

example, saving metadata on the clients would require onerous

mechanisms for metadata synchronization, and the practical

impossibility of allowing multiple clients to access cloud

database services independently. Solutions based on a trusted

proxy are more feasible, but they introduce a system

bottleneck that reduces availability, elasticity, and scalability

of cloud database services.

SecureDBaaS proposes a different approach where all data

and metadata are stored in the cloud database. SecureDBaaS

clients can retrieve the necessary metadata from the untrusted

database through SQL statements, so that multiple instances of

the SecureDBaaS client can access to the untrusted cloud

database independently with the guarantee of the same

availability and scalability properties of typical cloud DBaaS.

Encryption strategies for tenant data and innovative solutions

for metadata management and storage are described in the

following two sections.

IV. OPERATIONS

In this section, we outline the setup setting operations

carried out by a database administrator (DBA), and we

describe the execution of SQL operations on encrypted data in

two scenarios: a naıve context characterized by a single client,

and realistic contexts where the database services are accessed

by concurrent clients.

• Setup Phase

We describe how to initialize a SecureDBaaS architecture

from a cloud database service acquired by a tenant from a

cloud provider. We assume that the DBA creates the metadata

storage table that at the beginning contains just the database

metadata, and not the table metadata. The DBA populates the

database metadata through the SecureDBaaS client by using

randomly generated encryption keys for any combinations of

data types and encryption types, and stores them in the

metadata storage table after encryption through the master

key. Then, the DBA distributes the master key to the

legitimate users. User access control policies are administrated

by the DBA through some standard data control language as in

any unencrypted database.

In the following steps, the DBA creates the tables of the

encrypted database. It must consider the three field

confidentiality attributes (COL, MCOL, and DBC) introduced

at the end of the Section 3. Let us describe this phase by

referring to a simple but representative example shown in Fig.

4, where we have three secure tables named ST1, ST2, and

ST3. Each table STi (i ¼ 1; 2; 3) includes an encrypted table

Ti that contains encrypted tenant data, and a table metadata

Mi. (Although, in reality, the names of the columns of the

secure tables are randomly generated; for the sake of

simplicity, this figure refers to them through C1-CN.)

For example, if the database has to support a joint

statement among the values of T1.C2 and T2.C1, the DBA

must use the MCOL field confidentiality for T2.C1 that

references T1.C2 (solid arrow). In such a way, SecureDBaaS

can retrieve the encryption key specified in the column

metadata of T1.C2 from the metadata table M1 and can use

the same key for T2.C1. The solid arrow from M2 to M1

denotes that they explicitly share the encryption algorithm and

the key.

Fig.2. Management of the encryption keys according to the field
confidentiality parameter.

International Journal of Ethics in Engineering & Management Education

Website: www.ijeee.in (ISSN: 2348-4748, Volume 4, Issue 5, May 2017)

4

When operations (e.g., algebraic, order comparison) involve

more than two columns, it is convenient to adopt the DBC

field confidentiality. This has a twofold advantage: we can use

the special encryption key that is generated and implicitly

shared among all the columns of the database characterized by

the same secure type; we limit possible consistency issues in

some scenarios characterized by concurrent clients (see

Appendix B, available in the online supplemental material).

For example, the columns T1.C3, T2.C3, and T3.C1 in Fig. 4

share the same secure type. Hence, they reference the database

metadata, as represented by the dashed line, and use the

encryption key associated with their data and encryption types.

As they have the same data and encryption types, T1.C3,

T2.C3, and T3.C1 can use the same encryption key even if no

direct reference exists between them. The database metadata

already contain the encryption key K associated with the data

and the encryption types of the three columns, because the

encryption keys for all combinations of data and encryption

types are created in the initialization phase. Hence, K is used

as the encryption key of the T1.C3, T2.C3, and T3.C1

columns and copied in M1, M2, and M3.

• Sequential SQL Operations

We describe the SQL operations in SecureDBaaS by

considering an initial simple scenario in which we assume that

the cloud database is accessed by one client. Our goal here is

to highlight the main processing steps; hence, we do not take

into account performance optimizations and concurrency

issues that will be discussed in Section 4.3 and Appendix B,

available in the online supplemental material.

The first connection of the client with the cloud DBaaS is for

authentication purposes. SecureDBaaS relies on standard

authentication and authorization mechanisms pro-vided by the

original DBMS server. After the authentication, a user

interacts with the cloud database through the SecureDBaaS

client. SecureDBaaS analyzes the original operation to

identify which tables are involved and to retrieve their

metadata from the cloud database. The metadata are decrypted

through the master key and their information is used to

translate the original plain SQL into a query that operates on

the encrypted database.

Translated operations contain neither plaintext database

(table and column names) nor plaintext tenant data.

Nevertheless, they are valid SQL operations that the

SecureDBaaS client can issue to the cloud database.

Translated operations are then executed by the cloud database

over the encrypted tenant data. As there is a one-to-one

correspondence between plaintext tables and encrypted tables,

it is possible to prevent a trusted database user from accessing

or modifying some tenant data by granting limited privileges

on some tables. User privileges can be managed directly by

the untrusted and encrypted cloud database. The results of the

translated query that includes encrypted tenant data and

metadata are received by the SecureDBaaS client, decrypted,

and delivered to the user. The complexity of the translation

process depends on the type of SQL statement.

• Concurrent SQL Operations

The support to concurrent execution of SQL

statements issued by multiple independent (and possibly

geographically distributed) clients is one of the most important

benefits of SecureDBaaS with respect to state-of-the-art

solutions. Our architecture must guarantee consistency among

encrypted tenant data and encrypted metadata because

corrupted or out-of-date metadata would prevent clients from

decoding encrypted tenant data resulting in permanent data

losses. A thorough analysis of the possible issues and

solutions related to concurrent SQL operations on encrypted

tenant data and metadata is contained in Appendix B,

available in the online supplemental material. Here, we remark

the importance of distinguishing two classes of statements that

are supported by SecureDBaaS: SQL operations not causing

modifications to the database structure, such as read, write,

and update; operations involving alterations of the database

structure through creation, removal, and modification of

database tables (data definition layer operators).

In scenarios characterized by a static database structure,

SecureDBaaS allows clients to issue concurrent SQL com-

mands to the encrypted cloud database without introducing

any new consistency issues with respect to unencrypted

databases. After metadata retrieval, a plaintext SQL com-

mand is translated into one SQL command operating on

encrypted tenant data. As metadata do not change, a client can

read them once and cache them for further uses, thus

improving performance.

SecureDBaaS is the first architecture that allows con-

current and consistent accesses even when there are operations

that can modify the database structure. In such cases, we have

to guarantee the consistency of data and metadata through

isolation levels, such as the snapshot isolation [21], that we

demonstrate can work for most usage scenarios.

V. EXPERIMENTAL RESULTS

 We demonstrate the applicability of SecureDBaaS to

different cloud DBaaS solutions by implementing and

handling encrypted database operations on emulated and real

cloud infrastructures. The present version of the SecureDBaaS

prototype supports PostgreSQL, MySql, and SQL Server

relational databases. As a first result, we can observe that

porting SecureDBaaS to different DBMS required minor

changes related to the database connector, and minimal

modifications of the codebase. We refer to Appendix C,

available in the online supplemental material, for an in-depth

description of the prototype implementation.

Other tests are oriented to verify the functionality of

SecureDBaaS on different cloud database providers.

International Journal of Ethics in Engineering & Management Education

Website: www.ijeee.in (ISSN: 2348-4748, Volume 4, Issue 5, May 2017)

5

Experiments are carried out in Xeround [22], Postgres Plus

Cloud Database [23], Windows SQL Azure [24], and also on

an IaaS provider, such as Amazon EC2 [25], that requires a

manual setup of the database. The first group of cloud

providers offer ready-to-use solutions to tenants, but they do

not allow a full access to the database system. For example,

Xeround provides a standard MySql interface and proprietary

APIs that simplify scalability and availability of the cloud

database, but do not allow a direct access to the machine. This

prevents the installation of additional software, the use of

tools, and any customization. On the positive side,

SecureDBaaS using just standard SQL commands can encrypt

tenant data on any cloud database service. Some advanced

computation on encrypted data may require the installation of

custom libraries on the cloud infrastructure. This is the case of

Postgres plus Cloud that provides SSH access to enrich the

database with additional functions.

The next sets of experiments evaluate the performance and

the overheads of our prototype. We use the Emulab [26]

testbed that provides us a controlled environment with several

machines, ensuring repeatability of the experiments for the

variety of scenarios to consider in terms of workload models,

number of clients, and network latencies.

VI. CONCLUSIONS

We propose an innovative architecture that guarantees

confidentiality of data stored in public cloud databases. Unlike

state-of-the-art approaches, our solution does not rely on an

intermediate proxy that we consider a single point of failure

and a bottleneck limiting availability and scalability of typical

cloud database services. A large part of the research includes

solutions to support concurrent SQL operations (including

statements modifying the database structure) on encrypted

data issued by heterogenous and possibly geographically

dispersed clients. The proposed architecture does not require

modifications to the cloud database, and it is immediately

applicable to existing cloud DBaaS, such as the experimented

PostgreSQL plus Cloud Database [23], Windows Azure [24],

and Xeround [22]. There are no theoretical and practical limits

to extend our solution to other platforms and to include new

encryption algorithms.

It is worth observing that experimental results based

on the TPC-C standard benchmark show that the performance

impact of data encryption on response time becomes

negligible because it is masked by network latencies that are

typical of cloud scenarios. In particular, concurrent read and

write operations that do not modify the structure of the

encrypted database cause negligible overhead. Dynamic

scenarios characterized by (possibly) concurrent modifications

of the database structure are supported, but at the price of high

computational costs. These performance results open the space

to future improvements that we are investigating.

REFERENCES

[1] M. Armbrust et al.,“A View of Cloud Computing,” Comm. of t he

ACM, vol. 53, no. 4, pp. 50-58, 2010.

[2] W. Jansen and T. Grance, “Guidelines on Security and Privacy in

Public Cloud Computing,”Technical Report Special Publication

800-144, NIST, 2011.

[3] A.J. Feldman, W.P. Zeller, M.J. Freedman, and E.W. Felten,

“SPORC: Group Collaboration Using Untrusted Cloud Re-

sources,” Proc. Ninth USENIX Conf. Operating Systems Design

and Implementation, Oct. 2010.

[4] J. Li, M. Krohn, D. Mazie`res, and D. Shasha, “Secure Untrusted

Data Repository (SUNDR),” Proc. Sixth USENIX Conf. Opearting
Systems Design and Implementation, Oct. 2004.

[5] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi, M. Dahlin, and

M. Walfish, “Depot: Cloud Storage with Minimal Trust,” ACM
Trans. Computer Systems, vol. 29, no. 4, article 12, 2011.

[6] H. Hacigu¨mu¨s¸, B. Iyer, and S. Mehrotra, “Providing Database as

a Service,” Proc. 18th IEEE Int’l Conf. Data Eng., Feb. 2002.
[7] C. Gentry, “Fully Homomorphic Encryption Using Ideal Lattices,”

Proc. 41st Ann. ACM Symp. Theory of Computing, May 2009.

[8] R.A. Popa, C.M.S. Redfield, N. Zeldovich, and H. Balakrishnan,

“CryptDB: Protecting Confidentiality with Encrypted Query

Processing,” Proc. 23rd ACM Symp. Operating Systems

Principles,Oct. 2011.

[9] H. Hacigu¨mu¨s¸, B. Iyer, C. Li, and S. Mehrotra, “Executing SQL

over Encrypted Data in the Database-Service-Provider Model,”

Proc. ACM SIGMOD Int’l Conf. Management Data, June 2002.
[10] J. Li and E. Omiecinski, “Efficiency and Security Trade-Off in

Supporting Range Queries on Encrypted Databases,” Proc. 19th

Ann. IFIP WG 11.3 Working Conf. Data and Applications
Security,Aug. 2005.

[11] E. Mykletun and G. Tsudik, “Aggregation Queries in the Database-

as-a-Service Model,” Proc. 20th Ann. IFIP WG 11.3 Working
Conf. Data and Applications Security, July/Aug. 2006.

[12] D. Agrawal, A.E. Abbadi, F. Emekci, and A. Metwally, “Database

Management as a Service: Challenges and Opportunities,” Proc.

25th IEEE Int’l Conf. Data Eng., Mar.-Apr. 2009.

[13] V. Ganapathy, D. Thomas, T. Feder, H. Garcia-Molina, and R.

Motwani, “Distributing Data for Secure Database Services,” Proc.

Fourth ACM Int’l Workshop Privacy and Anonymity in the

Information Soc., Mar. 2011.

[14] A. Shamir, “How to Share a Secret,” Comm. of the ACM, vol. 22,
no. 11, pp. 612-613, 1979.

[15] M. Hadavi, E. Damiani, R. Jalili, S. Cimato, and Z. Ganjei, “AS5:

A Secure Searchable Secret Sharing Scheme for Privacy
Preserving Database Outsourcing,” Proc. Fifth Int’l Workshop

Autonomous and Spontaneous Security, Sept. 2013.

[16] “Oracle Advanced Security,” Oracle Corporation,
http://www.oracle.com/technetwork/database/options/advanced-

security, Apr. 2013.

[17] G. Cattaneo, L. Catuogno, A.D. Sorbo, and P. Persiano, “The

Design and Implementation of a Transparent Cryptographic File

System For Unix,” Proc. FREENIX Track: 2001 USENIX Ann.

Technical Conf., Apr. 2001.

[18] E. Damiani, S.D.C. Vimercati, S. Jajodia, S. Paraboschi, and P.

Samarati, “Balancing Confidentiality and Efficiency in Untrusted

Relational Dbmss,” Proc. Tenth ACM Conf. Computer and Comm.

Security, Oct. 2003.

[19] L. Ferretti, M. Colajanni, and M. Marchetti, “Supporting Security

and Consistency for Cloud Database,” Proc. Fourth Int’l Symp.

Cyberspace Safety and Security, Dec. 2012.

[20] “Transaction Processing Performance Council,” TPC-C, http://
www.tpc.org, Apr. 2013.

[21] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P.

O’Neil, “A Critique of Ansi Sql Isolation Levels,” Proc. ACM
SIGMOD, June 1995.

[22] “Xeround: The Cloud Database,” Xeround, http://xeround.com,

Apr. 2013.
[23] “Postgres Plus Cloud Database,” EnterpriseDB, http://

enterprisedb.com/cloud-database, Apr. 2013.

International Journal of Ethics in Engineering & Management Education

Website: www.ijeee.in (ISSN: 2348-4748, Volume 4, Issue 5, May 2017)

6

[24] “Windows Azure,” Microsoft corporation, http://www.

windowsazure.com, Apr. 2013.
[25] “Amazon Elastic Compute Cloud (Amazon Ec2),” Amazon Web

Services (AWS), http://aws.amazon.com/ec2, Apr. 2013.

[26] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M.
Newbold, M. Hibler, C. Barb, and A. Joglekar, “An Integrated

Experimental Environment for Distributed Systems and Net-

works,” Proc. Fifth USENIX Conf. Operating Systems Design and

Implementation, Dec. 2002.

[27] A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and D. Shasha,

“Making Snapshot Isolation Serializable,” ACM Trans. Database

Systems, vol. 30, no. 2, pp. 492-528, 2005.

[28] A. Boldyreva, N. Chenette, and A. O’Neill, “Order-Preserving

Encryption Revisited: Improved Security Analysis and Alternative

Solutions,” Proc. 31st Ann. Conf. Advances in Cryptology

(CRYPTO ’11), Aug. 2011.

[29] “IPLatencyStatistics,”Verizon,http://www.verizonbusiness.
com/about/network/latency, Apr. 2013.

ABOUT THE AUTHORS

J. Sagar babu, Asst. Professor

Received B.Tech degree in Computer

Science and Engineering from the

University of JNTU Hyderabad and

M.Tech degree in Computer Science and

Engineering from the JNTU-Hyderabad.

He is currently working as an Asst.

Professor in CSE Department at Princeton

College of Engineering & Technology,

Hyderabad. Up to now he was attended

several National and International Conferences, Workshops.

K. Yakhoob, Asst. Professor

Received B.Tech degree in Information

Technology from the University of JNTU

Hyderabad and M.Tech degree in

Computer Science and Engineering from

the JNTU-Hyderabad. He is currently

working as an Asst. Professor in CSE

Department at Princeton College of

Engineering & Technology, Hyderabad.

Up to now he was attended several

National and International Conferences, Workshops.

E. Laxman, Asst. Professor

Received B.Tech degree in Computer

Science and Engineering from the

University of JNTU Hyderabad and

M.Tech degree in Computer Science and

Engineering from the JNTU-Hyderabad.

He is currently working as an Asst.

Professor in CSE Department at Princeton

College of Engineering & Technology,

Hyderabad. Up to now he was attended several National and

International Conferences, Workshops.

