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Abstract— Placing critical data in the hands of a cloud 

provider should come with the guarantee of security and 

availability for data at rest, in motion, and in use. Several 

alternatives exist for storage services, while data confidentiality 

solutions for the database as a service paradigm are still 

immature. We propose a novel architecture that integrates cloud 

database services with data confidentiality and the possibility of 

executing concurrent operations on encrypted data. This is the 

first solution supporting geographically distributed clients to 

connect directly to an encrypted cloud database, and to execute 

concurrent and independent operations including those 

modifying the database structure. The proposed architecture has 

the further advantage of eliminating intermediate proxies that 

limit the elasticity, availability, and scalability properties that are 

intrinsic in cloud-based solutions. The efficacy of the proposed 

architecture is evaluated through theoretical analyses and 

extensive experimental results based on a prototype 

implementation subject to the TPC-C standard benchmark for 

different numbers of clients and network latencies. 

Index Terms— security, confidentiality, SecureDBaaS, 

database 

I. INTRODUCTION 

IN a cloud context, where critical information is placed in 

infrastructures of untrusted third parties, ensuring data 

confidentiality is of paramount importance [1], [2]. This 

requirement  imposes  clear  data  management  choices: 

original plain data must be accessible only by trusted parties 

that do not include cloud providers, intermediaries, and  

Internet;  in  any  untrusted  context,  data  must  be encrypted. 

Satisfying these goals has different levels of complexity 

depending on the type of cloud service. There are several 

solutions ensuring confidentiality for the storage as a service 

paradigm (e.g., [3], [4], [5]), while guaranteeing 

confidentiality in the database as a service (DBaaS) paradigm 

[6] is still an open research area. In this context, we propose 

SecureDBaaS as the first solution that allows cloud tenants to  

take  full  advantage  of  DBaaS  qualities,  such  as 

availability,  reliability,  and  elastic  scalability,  without 

exposing unencrypted data to the cloud provider. 

 

The architecture design was motivated by a threefold goal: 

to allow multiple, independent, and geographically distributed 

clients to execute concurrent operations on encrypted data, 

including SQL statements that modify the database structure; 

to preserve data confidentiality and consistency at the client 

and cloud level; to eliminate any intermediate server between 

the cloud client and the cloud provider. The possibility of 

combining availability, elasti-city, and scalability of a typical 

cloud DBaaS with data confidentiality is demonstrated 

through a prototype of SecureDBaaS that supports the 

execution of concurrent and independent operations to the 

remote encrypted database from many geographically 

distributed clients as in any unencrypted DBaaS setup. To 

achieve these goals, SecureDBaaS integrates existing 

cryptographic schemes, isolation mechanisms, and novel 

strategies for management of encrypted metadata on the 

untrusted cloud database. This paper contains a theoretical 

discussion about solutions for data consistency issues due to 

concurrent and independent client accesses to encrypted data. 

In this context, we cannot apply fully homomorphic 

encryption schemes [7] because of their excessive 

computational complexity. 

 

The SecureDBaaS architecture is tailored to cloud 

platforms and does not introduce any intermediary proxy or 

broker server between the client and the cloud provider. 

Eliminating any trusted intermediate server allows 

SecureDBaaS to achieve the same availability, reliability, and 

elasticity levels of a cloud DBaaS. Other proposals (e.g., [8], 

[9], [10], [11]) based on intermediate server(s) were 

considered impracticable for a cloud-based solution because 

any proxy represents a single point of failure and a system 

bottleneck that limits the main benefits (e.g., scalability, 

availability, and elasticity) of a database service deployed on a 

cloud platform. Unlike SecureDBaaS, architectures relying on 

a trusted intermediate proxy do not support the most typical 

cloud scenario where geographically dispersed clients can 

concurrently issue read/write operations and data structure 

modifications to a cloud database. 
 

A large set of experiments based on real cloud platforms 

demonstrate that SecureDBaaS is immediately applicable to 

any DBMS because it requires no modification to the cloud 

database services. Other studies where the proposed 

architecture is subject to the TPC-C standard benchmark for 

different numbers of clients and network latencies show that 
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the performance of concurrent read and write operations not 

modifying the SecureDBaaS database structure is comparable 

to that of unencrypted cloud database. Workloads including 

modifications to the data-base structure are also supported by 

SecureDBaaS, but at the price of overheads that seem 

acceptable to achieve the desired level of data confidentiality. 

The motivation of these results is that network latencies, 

which are typical of cloud scenarios, tend to mask the 

performance costs of data encryption on response time. The 

overall conclusions of this paper are important because for the 

first time they demonstrate the applicability of encryption to 

cloud database services in terms of feasibility and 

performance. 

 

 The remaining part of this paper is structured as follows: 

Section 2 compares our proposal to existing solutions related 

to confidentiality in cloud database services. Sections 3 and 4 

describe the overall architecture and how it supports its main 

operations, respectively. Section 5 reports some experimental 

evaluation achieved through the implemented prototype. 

Section 6 outlines the main results. Space limitation requires 

us to postpone the assumed security model in Appendix A, 

which can be found on the Computer Society  Digital Library 

athttp://doi. ieeecomputersociety.org/10.1109/TPDS.2013.154,       

to de-scribe our solutions to concurrency and data consistency 

problems in Appendix B, available in the online supple-mental 

material, to detail the prototype architecture in Appendix C, 

available in the online supplemental material. 

 

II. RELATED WORK 

 

SecureDBaaS provides several original features that 

differentiate it from previous work in the field of security for 

remote database services. 

 

• It guarantees data confidentiality by allowing a cloud 

database server to execute concurrent SQL operations 

(not only read/write, but also modifications to the 

database structure) over encrypted data. 

• It provides the same availability, elasticity, and 

scalability of the original cloud DBaaS because it does 

not require any intermediate server. Response times are 

affected by cryptographic overheads that for most SQL 

operations are masked by network latencies. 

• Multiple clients, possibly geographically distributed, can 

access concurrently and independently a cloud database 

service. 

• It does not require a trusted broker or a trusted proxy 

because tenant data and metadata stored by the cloud 

database are always encrypted. 

• It is compatible with the most popular relational database 

servers, and it is applicable to different DBMS 

implementations because all adopted solutions are 

database agnostic. 

 

Cryptographic file systems and secure storage solutions 

represent the earliest works in this field. We do not detail the 

several papers and products (e.g., Sporc [3], Sundr [4], Depot 

[5]) because they do not support computations on encrypted 

data. 

 

Different approaches guarantee some confidentiality (e.g., 

[12], [13]) by distributing data among different providers and 

by taking advantage of secret sharing [14]. 

 

In such a way, they prevent one cloud provider to read its 

portion of data, but information can be reconstructed by 

colluding cloud providers. A step forward is proposed in [15], 

that makes it possible to execute range queries on data and to 

be robust against collusive providers. SecureDBaaS differs 

from these solutions as it does not require the use of multiple 

cloud providers, and makes use of SQL-aware encryption 

algorithms to support the execution of most common SQL 

operations on encrypted data. 

 

SecureDBaaS relates more closely to works using 

encryption to protect data managed by untrusted databases. In 

such a case, a main issue to address is that cryptographic 

techniques cannot be naively applied to standard DBaaS 

because DBMS can only execute SQL operations over 

plaintext data. 

 

III. ARCHITECTURE DESIGN 

 

SecureDBaaS is designed to allow multiple and independent 

clients to connect directly to the untrusted cloud DBaaS 

without any intermediate server. Fig. 1 describes the overall 

architecture. We assume that a tenant organization acquires a 

cloud database service from an untrusted DBaaS provider. The 

tenant then deploys one or more machines (Client 1 through 

N) and installs a SecureDBaaS client on each of them. This 

client allows a user to connect to the cloud DBaaS to 

administer it, to read and write data, and even to create and 

modify the database tables after creation. 

 

 

 

 

 

 
 

 

 

 

 

 
Fig.1. SecureDBaaS architecture 

 

We assume the same security model that is commonly 

adopted by the literature in this field (e.g., [8], [9]), where 

tenant users are trusted, the network is untrusted, and the 

cloud provider is honest-but-curious, that is, cloud service 

operations are executed correctly, but tenant information 

confidentiality is at risk. For these reasons, tenant data, data 
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structures, and metadata must be encrypted before exiting 

from the client. A thorough presentation of the security model 

adopted in this paper is in Appendix A, available in the online 

supplemental material. 

 

The information managed by SecureDBaaS includes 

plaintext data, encrypted data, metadata, and encrypted 

metadata. Plaintext data consist of information that a tenant 

wants to store and process remotely in the cloud DBaaS. To 

prevent an untrusted cloud provider from violating 

confidentiality of tenant data stored in plain form, 

SecureDBaaS adopts multiple cryptographic techniques to 

transform plaintext data into encrypted tenant data and 

encrypted tenant data structures because even the names of the 

tables and of their columns must be encrypted. SecureDBaaS 

clients produce also a set of metadata consisting of 

information required to encrypt and decrypt data as well as 

other administration information. Even metadata are encrypted 

and stored in the cloud DBaaS. 

 

SecureDBaaS moves away from existing architectures that 

store just tenant data in the cloud database, and save metadata 

in the client machine [9] or split metadata between the cloud 

database and a trusted proxy [8]. When considering scenarios 

where multiple clients can access the same database 

concurrently, these previous solutions are quite inefficient. For 

example, saving metadata on the clients would require onerous 

mechanisms for metadata synchronization, and the practical 

impossibility of allowing multiple clients to access cloud 

database services independently. Solutions based on a trusted 

proxy are more feasible, but they introduce a system 

bottleneck that reduces availability, elasticity, and scalability 

of cloud database services. 

 

SecureDBaaS proposes a different approach where all data 

and metadata are stored in the cloud database. SecureDBaaS 

clients can retrieve the necessary metadata from the untrusted 

database through SQL statements, so that multiple instances of 

the SecureDBaaS client can access to the untrusted cloud 

database independently with the guarantee of the same 

availability and scalability properties of typical cloud DBaaS. 

Encryption strategies for tenant data and innovative solutions 

for metadata management and storage are described in the 

following two sections. 

 

IV. OPERATIONS 

 

In this section, we outline the setup setting operations 

carried out by a database administrator (DBA), and we 

describe the execution of SQL operations on encrypted data in 

two scenarios: a naıve context characterized by a single client, 

and realistic contexts where the database services are accessed 

by concurrent clients. 

 

• Setup Phase 

We describe how to initialize a SecureDBaaS architecture 

from a cloud database service acquired by a tenant from a 

cloud provider. We assume that the DBA creates the metadata 

storage table that at the beginning contains just the database 

metadata, and not the table metadata. The DBA populates the 

database metadata through the SecureDBaaS client by using 

randomly generated encryption keys for any combinations of 

data types and encryption types, and stores them in the 

metadata storage table after encryption through the master 

key. Then, the DBA distributes the master key to the 

legitimate users. User access control policies are administrated 

by the DBA through some standard data control language as in 

any unencrypted database. 

 

In the following steps, the DBA creates the tables of the 

encrypted database. It must consider the three field 

confidentiality attributes (COL, MCOL, and DBC) introduced 

at the end of the Section 3. Let us describe this phase by 

referring to a simple but representative example shown in Fig. 

4, where we have three secure tables named ST1, ST2, and 

ST3. Each table STi (i ¼ 1; 2; 3) includes an encrypted table 

Ti that contains encrypted tenant data, and a table metadata 

Mi. (Although, in reality, the names of the columns of the 

secure tables are randomly generated; for the sake of 

simplicity, this figure refers to them through C1-CN.) 

 

For example, if the database has to support a joint 

statement among the values of T1.C2 and T2.C1, the DBA 

must use the MCOL field confidentiality for T2.C1 that 

references T1.C2 (solid arrow). In such a way, SecureDBaaS 

can retrieve the encryption key specified in the column 

metadata of T1.C2 from the metadata table M1 and can use 

the same key for T2.C1. The solid arrow from M2 to M1 

denotes that they explicitly share the encryption algorithm and 

the key. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

Fig.2. Management of the encryption keys according to the field 
confidentiality parameter. 
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When operations (e.g., algebraic, order comparison) involve 

more than two columns, it is convenient to adopt the DBC 

field confidentiality. This has a twofold advantage: we can use 

the special encryption key that is generated and implicitly 

shared among all the columns of the database characterized by 

the same secure type; we limit possible consistency issues in 

some scenarios characterized by concurrent clients (see 

Appendix B, available in the online supplemental material). 

For example, the columns T1.C3, T2.C3, and T3.C1 in Fig. 4 

share the same secure type. Hence, they reference the database 

metadata, as represented by the dashed line, and use the 

encryption key associated with their data and encryption types. 

As they have the same data and encryption types, T1.C3, 

T2.C3, and T3.C1 can use the same encryption key even if no 

direct reference exists between them. The database metadata 

already contain the encryption key K associated with the data 

and the encryption types of the three columns, because the 

encryption keys for all combinations of data and encryption 

types are created in the initialization phase. Hence, K is used 

as the encryption key of the T1.C3, T2.C3, and T3.C1 

columns and copied in M1, M2, and M3. 

 
•  Sequential SQL Operations 

 

We describe the SQL operations in SecureDBaaS by 

considering an initial simple scenario in which we assume that 

the cloud database is accessed by one client. Our goal here is 

to highlight the main processing steps; hence, we do not take 

into account performance optimizations and concurrency 

issues that will be discussed in Section 4.3 and Appendix B, 

available in the online supplemental material. 

 

The first connection of the client with the cloud DBaaS is for 

authentication purposes. SecureDBaaS relies on standard 

authentication and authorization mechanisms pro-vided by the 

original DBMS server. After the authentication, a user 

interacts with the cloud database through the SecureDBaaS 

client. SecureDBaaS analyzes the original operation to 

identify which tables are involved and to retrieve their 

metadata from the cloud database. The metadata are decrypted 

through the master key and their information is used to 

translate the original plain SQL into a query that operates on 

the encrypted database. 

 

Translated operations contain neither plaintext database 

(table and column names) nor plaintext tenant data. 

Nevertheless, they are valid SQL operations that the 

SecureDBaaS client can issue to the cloud database. 

Translated operations are then executed by the cloud database 

over the encrypted tenant data. As there is a one-to-one 

correspondence between plaintext tables and encrypted tables, 

it is possible to prevent a trusted database user from accessing 

or modifying some tenant data by granting limited privileges 

on some tables. User privileges can be managed directly by 

the untrusted and encrypted cloud database. The results of the 

translated query that includes encrypted tenant data and 

metadata are received by the SecureDBaaS client, decrypted, 

and delivered to the user. The complexity of the translation 

process depends on the type of SQL statement. 

 

• Concurrent SQL Operations 

 

The support to concurrent execution of SQL 

statements issued by multiple independent (and possibly 

geographically distributed) clients is one of the most important 

benefits of SecureDBaaS with respect to state-of-the-art 

solutions. Our architecture must guarantee consistency among 

encrypted tenant data and encrypted metadata because 

corrupted or out-of-date metadata would prevent clients from 

decoding encrypted tenant data resulting in permanent data 

losses. A thorough analysis of the possible issues and 

solutions related to concurrent SQL operations on encrypted 

tenant data and metadata is contained in Appendix B, 

available in the online supplemental material. Here, we remark 

the importance of distinguishing two classes of statements that 

are supported by SecureDBaaS: SQL operations not causing 

modifications to the database structure, such as read, write, 

and update; operations involving alterations of the database 

structure through creation, removal, and modification of 

database tables (data definition layer operators). 

 

In scenarios characterized by a static database structure, 

SecureDBaaS allows clients to issue concurrent SQL com-

mands to the encrypted cloud database without introducing 

any new consistency issues with respect to unencrypted 

databases. After metadata retrieval, a plaintext SQL com-

mand is translated into one SQL command operating on 

encrypted tenant data. As metadata do not change, a client can 

read them once and cache them for further uses, thus 

improving performance. 

 

SecureDBaaS is the first architecture that allows con-

current and consistent accesses even when there are operations 

that can modify the database structure. In such cases, we have 

to guarantee the consistency of data and metadata through 

isolation levels, such as the snapshot isolation [21], that we 

demonstrate can work for most usage scenarios. 

 

V. EXPERIMENTAL RESULTS 

 

 We demonstrate the applicability of SecureDBaaS to 

different cloud DBaaS solutions by implementing and 

handling encrypted database operations on emulated and real 

cloud infrastructures. The present version of the SecureDBaaS 

prototype supports PostgreSQL, MySql, and SQL Server 

relational databases. As a first result, we can observe that 

porting SecureDBaaS to different DBMS required minor 

changes related to the database connector, and minimal 

modifications of the codebase. We refer to Appendix C, 

available in the online supplemental material, for an in-depth 

description of the prototype implementation. 

 

Other tests are oriented to verify the functionality of 

SecureDBaaS on different cloud database providers. 
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Experiments are carried out in Xeround [22], Postgres Plus 

Cloud Database [23], Windows SQL Azure [24], and also on 

an IaaS provider, such as Amazon EC2 [25], that requires a 

manual setup of the database. The first group of cloud 

providers offer ready-to-use solutions to tenants, but they do 

not allow a full access to the database system. For example, 

Xeround provides a standard MySql interface and proprietary 

APIs that simplify scalability and availability of the cloud 

database, but do not allow a direct access to the machine. This 

prevents the installation of additional software, the use of 

tools, and any customization. On the positive side, 

SecureDBaaS using just standard SQL commands can encrypt 

tenant data on any cloud database service. Some advanced 

computation on encrypted data may require the installation of 

custom libraries on the cloud infrastructure. This is the case of 

Postgres plus Cloud that provides SSH access to enrich the 

database with additional functions. 

 

The next sets of experiments evaluate the performance and 

the overheads of our prototype. We use the Emulab [26] 

testbed that provides us a controlled environment with several 

machines, ensuring repeatability of the experiments for the 

variety of scenarios to consider in terms of workload models, 

number of clients, and network latencies. 

 

VI. CONCLUSIONS 

 

We propose an innovative architecture that guarantees 

confidentiality of data stored in public cloud databases. Unlike 

state-of-the-art approaches, our solution does not rely on an 

intermediate proxy that we consider a single point of failure 

and a bottleneck limiting availability and scalability of typical 

cloud database services. A large part of the research includes 

solutions to support concurrent SQL operations (including 

statements modifying the database structure) on encrypted 

data issued by heterogenous and possibly geographically 

dispersed clients. The proposed architecture does not require 

modifications to the cloud database, and it is immediately 

applicable to existing cloud DBaaS, such as the experimented 

PostgreSQL plus Cloud Database [23], Windows Azure [24], 

and Xeround [22]. There are no theoretical and practical limits 

to extend our solution to other platforms and to include new 

encryption algorithms. 

 

It is worth observing that experimental results based 

on the TPC-C standard benchmark show that the performance 

impact of data encryption on response time becomes 

negligible because it is masked by network latencies that are 

typical of cloud scenarios. In particular, concurrent read and 

write operations that do not modify the structure of the 

encrypted database cause negligible overhead. Dynamic 

scenarios characterized by (possibly) concurrent modifications 

of the database structure are supported, but at the price of high 

computational costs. These performance results open the space 

to future improvements that we are investigating. 
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