I nter national Journal of Ethicsin Engineering & Management Education
Website: www.ijeeein (ISSN: 2348-4748, Volume 3, Issue 1, January 2016)

Architectural Styles and the Design of Networ k-
based Software Architectures

Satyam Arragokula
Assistant Professor
University College of Science
Saifabad, O.U, Hyderabad, Ts
satya.anull@gmail.com

Abstract: The World Wide Web has succeeded in large part
because its software architecture has been designed to meet the
needs of an Internet-scale distributed hypermedia system. The
Web has been iteratively developed over the past ten years
through a series of modifications to the standards that define its
architecture. In order to identify those aspects of the Web that
needed improvement and avoid undesirable modifications, a
model for the modern Web ar chitecture was needed to guide its
design, definition, and deployment. Software architecture
research investigates methods for determining how best to
partition a system, how components identify and communicate
with each other, how information is communicated, how elements
of a system can evolve independently, and how all of the above
can be described using formal and informal notations. My work
is motivated by the desire to understand and evaluate the
architectural design of network- based application software
through principled use of architectural constraints, thereby
obtaining the functional, performance, and social properties
desired of architecture. An architectural style is a named,
coordinated set of architectural constraints. This dissertation
defines a framework for under standing softwar e architecture via
architectural styles and demonstrates how styles can be used to
guide the architectural design of network-based application
software. A survey of architectural styles for network-based
applications is used to classify styles according to the
architectural properties they induce on architecture for
distributed hypermedia. | then introduce the Representational
State Transfer (REST) architectural style and describe how
REST has been used to guide the design and development of the
architecture for the modern Web.

Keywords: architecture, Web, HTTP, WWW, Code, Network,
HTML

1. INTRODUCTION

As predicted by Perry and Wolf, software architeethas
been a focal point for software engineering redeancthe

1990s. The complexity of modern software systemseha

necessitated a greater emphasis on componentiztdns;
where the implementation is partitioned into indegent

components that communicate to perform a desiradt. ta

Software architecture research investigates methfms
determining how best to partition a system, how ponents
identify and communicate with each other, how infation is

M. Yesu Ratnam
Assistant Professor
Nizam College
Hyderabad, Ts, India

yesurathnammotamarry@gmail.co

design decisions at the architectural level shdutd made
within the context of the functional, behaviorahdasocial
requirements of the system being designed, whichais
principle that applies equally to both softwarehéecture and
the traditional field of building architecture. Thaideline that
“form follows function” comes from hundreds of ysaof
experience with failed building projects, but ideof ignored
by software practitioners. The funny bit within tihéonty
Python sketch, cited above, is the absurd noticat #m
architect, when faced with the goal of designing uahan
block of flats (apartments), would present a buiddesign
with all the components of a modern slaughterholismight
very well be the best slaughterhouse design eveceived,
but that would be of little comfort to the prospeettenants as
they are whisked along hallways containing rotakniyes.

The hyperbole ofThe Architects Sketchmay seem
ridiculous, but consider how often we see softwargjects
begin with adoption of the latest fad in architeatudesign,
and only later discover whether or not the systequirements
call for such an architecture. Design-by-buzzworl a
common occurrence. At least some of this behavitrimvthe
software industry is due to a lack of understandihgvhy a
given set of architectural constraints is usefalother words,
the reasoning behind good software architecturesnas
apparent to designers when those architecturesetaeted for
reuse.

This dissertation explores a junction on the frenstiof
two research disciplines in computer science: soiwand
networking. Software research has long been cordewith
the categorization of software designs and the Idpwgent of
design methodologies, but has rarely been abldjectively
evaluate the impact of various design choices ostesy
behavior. Networking research, in contrast, is é&clion the
details of generic communication behavior betwegstesns
and improving the performance of particular commation
techniques, often ignoring the fact that changirte t
interaction style of an application can have manpact on
performance than the communication protocols usedHat
interaction. My work is motivated by the desireutaderstand
and evaluate the architectural design of netwosdeba
application software through principled use of &etdtural
constraints, thereby obtaining the functional, perfance, and

communicated, how elements of a system can evolveocial properties desired of an architecture. Wharen a

independently, and how all of the above can be ritest
using formal and informal notations.

A good architecture is not created in a vacuum. All

31

name, a coordinated set of architectural consgaieicomes
an architectural style.
The first three chapters of this dissertation defia

I nter national Journal of Ethicsin Engineering & Management Education
Website: www.ijeeein (ISSN: 2348-4748, Volume 3, Issue 1, January 2016)

framework for
architectural styles, revealing how styles can $&duto guide
the architectural design of network-based applicesioftware.
Common architectural styles are surveyed and dledsi
according to the architectural properties they aedwhen
applied to an architecture for network-based hygelien This
classification is used to identify a set of arctiiteal

constraints that could be used to improve the tachire of
the early World Wide Web.

Software Architecture: In spite of the interest in software

architecture as a field of research, there iselisreement
among researchers as to what exactly should badedlin
the definition of architecture. In many cases, thés led to
important aspects of architectural design beinglowvked by
past research. This chapter
terminology for software architecture based on

examination of existing definitions within the ligdure and
my own insight with respect to network-based ampion
architectures. Each definition, highlighted withénbox for
ease of reference, is followed by a discussion @# fit is
derived from, or compares to, related research.

Run-time Abstraction: Softwarearchitecturdés an abstraction
of the run-time elements of a software system dusome
phase of its operation. A system may be composedanfy
levels of abstraction and many phases of operagiach with
its own software architecture. At the heart of wsafte
architecture is the principle of abstraction: hglsome of the
details of a system through encapsulation in otdebetter
identify and sustain its properties. A complex sygstwill
contain many levels of abstraction, each with itwno
architecture. Architecture represents an abstmaaifosystem
behavior at that level, such that architecturaimelsts are
delineated by the abstract interfaces they provaether
elements at that level . Within each element mayfdumd
another architecture, defining the system of selrehts that
implement the behavior represented by the paremhet’'s
abstract interface. This recursion of architecturestinues
down to the most basic system elements: thosectiratot be
decomposed into less abstract elements.

understanding software architecturéa v characteristics

independent of a given
implementation. Therefore, architectural design aodirce
code structural design, though closely related, sparate
design activities. Unfortunately, some descriptiohsoftware
architecture fail to make this distinction (e.@])[

Elements. Softwarearchitecturas defined by a configuration
of architectural elements—components, connectonsgd a
data—constrained in their relationships in ordeathieve a
desired set of architectural properties. A compnshe
examination of the scope and intellectual basissfuftware
architecture can be found in Perry and Wolf. Thegspnt a
model that defines a software architecture as a dfet
architecturalelementsthat have a particuldorm, explicated
by a set of rationale. Architectural elements include

defines a self-consisteprocessing, data, and connecting elements. Fodefised by
arthe properties of the elements and the relatiossaipong the

elements — that is, the constraints on the elemenie
rationale provides the underlying basis for thehaecture by
capturing the motivation for the choice of architeal style,
the choice of elements, and the form.

My definitions for software architecture are anbelated
version of those within the Perry and Wolf modeicept that
| exclude rationale. Although rationale is an intpat aspect
of software architecture research and of architattu
description in particular, including it within traefinition of
software architecture would imply that design doeatation
is part of the run-time system. The presence oeradss of
rationale can influence the evolution of an ardhiiee, but,
once constituted, the architecture is independ€tiis seasons
for being. Reflective systems can use the chaiiatitey of
past performance to change future behavior, butoimg so
they are replacing one lower- level architecturéhveinother
lower-level architecture, rather than encompassatgpnale
within those architectures.

Configurations:. A configuration is the structure of
architectural relationships among components, otiong
and data during a period of system run-time. Abedvdl. [1]
define architectural description as supporting dlescription
of systems

component’s

in terms of three basic syntactic chksse
ascomponents, which are the locus of computationneotors,
which define the interactions between components a

Perry and Wolf define processing elements
“transformers of data,” while Shaw et al. descigoenponents

as “the locus of computation and state.” This isthfer
clarified in Shaw and Clements “A component is &t wf
software that performs some function at run-timgarples
include programs, objects, processes, and filtérki$ raises
an important distinction between software architeetand
what is typically referred to as software structuree former
is an abstraction of the run-time behavior of atwgafe
system, whereas the latter is a property of thécssaftware
source code. Although there are advantages to fpatvia
modular structure of the source code match therdposition
of behavior within a running system, there are aldeantages
to having independent software components be imgheed
using parts of the same code (e.g., shared lilmarid/e
separate the view of software architecture front thfathe
source code in order to focus on the software’s-time

32

configurations, which are collections of interagtin
components and connectors. Various style-speciitciete
notations may be used to represent these visualtylitate
the description of legal computations and intecadj and
constrain the set of desirable systems.

Strictly speaking, one might think of a configueatias
being equivalent to a set of specific constraimscomponent
interaction. For example, Perry and Wolf includpdiogy in
their definition of architectural form relationskipHowever,
separating the active topology from more generakstraints
allows an architect to more easily distinguish thetive
configuration from the potential domain of all legiate
configurations. Additional rationale for distinghiag
configurations within architectural description dmages is
presented in Medvidovic and Taylor .

I nter national Journal of Ethicsin Engineering & Management Education
Website: www.ijeeein (ISSN: 2348-4748, Volume 3, Issue 1, January 2016)

Properties: The set of architectural properties of a softwaresystem construct. A pattern language is a systeipatierns
architecture includes all properties that derivenfr the organized in a structure that guides the patteapglication.
selection and arrangement of components, connecamd Both concepts are based on the writings of Alexaredeal
data within the system. Examples include both thectional with regard to building architecture.

properties achieved by the system and non-fundtiona The design space of patterns includes implementatio

properties, such as relative ease of evolutionsability of
components, efficiency, and dynamic extensibiligften
referred to as quality attributes [9].

Properties are induced by the set of constrainthinvi
architecture. Constraints are often motivated bye th
application of a software engineering principleatbaspect of
the architectural elements. For example,uthi#orm pipe-and-
filter style obtains the qualities of reusability of campnts
and configurability of the application by applyiggnerality to
its component interfaces — constraining the comptm# a
single interface type. Hence, the architecturalst@mt is
“uniform component interface,” motivated by the gelity
principle, in order to obtain two desirable quelktithat will
become the architectural properties of
configurable components when that style is inséa@ti within
an architecture.

The goal of architectural design
architecture with a set of architectural propertiegt form a
superset of the system requirements. The relathmitance
of the various architectural properties dependthemature of
the intended system. Section 2.3 examines the prepehat
are of particular interest to network-based apfitica
architectures.

Styles: An architectural
architectural constraints that restricts the rdéeglres of
architectural elements and the allowed relatiorsslamong
those elements within any architecture that confotm that
style. Since an architecture embodies both funatiand non-
functional properties, it can be difficult to dithccompare
architectures for different types of systems, orefieen the
same type of system set in different environmesiiges are a
mechanism for categorizing architectures and fofinahey
their common characteristics.
abstraction for the interactions of components tuamy the
essence of a pattern of interaction by ignoringitteédental
details of the rest of the architecture.

Perry and Wolf define architectural style as artralsion
of element types and formal aspects from variouscifip
architectures, perhaps concentrating on only gegspects of
an architecture. An architectural style encapsslatgortant
decisions about the architectural elements and asipés
important constraints on the elements and thedaticgiships.
This definition allows for styles that focus onlyn ahe
connectors of an architecture, or on specific aspe€ the
component interfaces.

Patterns and Pattern Languages. In parallel with the
software engineering research in architectural estylthe
object- oriented programming community has beeroeixm
the use of design patterns and pattern languagegdoribe
recurring abstractions in object-based softwareetigment.
A design pattern is defined as an important andirreg

33

is to create an

concerns specific to the techniques of object-oei@n
programming, such as class inheritance and interfac
composition, as well as the higher-level designudss
addressed by architectural styles. In some caselsitectural
style descriptions have been recast as architégbatterns.
However, a primary benefit of patterns is that thegn
describe relatively complex protocols of interactidoetween
objects as a single abstraction, thus includindp lsonstraints
on behavior and specifics of the implementationgéneral, a
pattern, or pattern language in the case of maliiplegrated
patterns, can be thought of as a recipe for imphtimg a
desired set of interactions among objects. In otherds, a
pattern defines a process for solving a problenfobgwing a

reusable angath of design and implementation choices.

2. NETWORK-BASED APPLICATION
ARCHITECTURES

This chapter continues our discussion of backgrauatkrial
by focusing on network- based application architexgt and
describing how styles can be used to guide thefitactural
design.

Scope: Architecture is found at multiple levels within

style is a coordinated set of software systems. This dissertation examines thiedist level

of abstraction in software architecture, whereittieractions
among components are capable of being realizea:twank
communication. We limit our discussion to stylesr fo
network-based application architectures in ordeethuce the
dimensions of variance among the styles studied.
Network-based vs. Distributed: The primary didtioe
between network-based architectures and software
architectures in general is that communication ketw

Each style provides acomponents is restricted to message passing [6]ther

equivalent of message passing if a more efficieathanism
can be selected at runtime based on the location of
components.

Tanenbaum and van Renesse make a distinction betwee
distributed systems and network-based systemsstahdited
system is one that looks to its users like an amyin
centralized system, but runs on multiple, indepahd&PUs.

In contrast, network-based systems are those aapabl
operation across a network, but not

necessarily in a fashion that is transparent tate. In some
cases it is desirable for the user to be awardefifference
between an action that requires a network requesbae that
is satisfiable on their local system, particulankien network
usage implies an extra transaction cost. This destsen

covers network-based systems by not limiting thedaate
styles to those that preserve transparency fousbe

Application Software vs. Networking Software: Another
restriction on the scope of this dissertation & the limit our

I nter national Journal of Ethicsin Engineering & Management Education
Website: www.ijeeein (ISSN: 2348-4748, Volume 3, Issue 1, January 2016)

discussion to application architectures, excludirggoperating
system, networking software, and some architectatgles
that would only use a network for system supporf.(e
process control styles). Applications represent“thesiness-
aware” functionality of a system.

Application software architecture is an abstractievel
of an overall system, in which the goals of a usgtion are
representable as functional architectural properti€or
example, a hypermedia application must be concemitd
the location of information pages, performing resfae and
rendering data streams. This is in contrast to tavor&ing
abstraction, where the goal is to move bits frore totation
to another without regard to why those bits arendgpenoved.
It is only at the application level that we can leate design
trade-offs based on the number of interactionsuger action,
the location of application state, the effectiveotighput of all
data streams (as opposed to the potential throdgbpua
single data stream), the extent of communicatioingoe
performed per user action, etc.

Evaluating the Design of Application Architectures. One of
the goals of this dissertation is to provide degjgidance for
the task of selecting or creating the most appabgri
architecture for a given application domain, kegpim mind
that an architecture is the realization of an dectirral design
and not the design itself. An architecture can \euated by
its run-time characteristics, but we would obvigustefer an
evaluation mechanism that could be applied to thadiclate
architectural designs before having to implemehbathem.
Unfortunately, architectural designs are notoripusard to
evaluate and compare in an objective manner. Lilkastm
artifacts of creative design, architectures are nadly
presented as a completed work, as if the desigplgisprung
fully-formed from the architect’s mind. In order ¢valuate an
architectural design, we need to examine the desitionale
behind the constraints it places on a system, antpare the
properties derived from those constraints to thegeta
application’s objectives.

The first level of evaluation is set by the appiima’s
functional requirements. For example, it makes enss to
evaluate the design of a process control architecagainst
the requirements of a distributed hypermedia syssémee the
comparison is moot if the architecture would nondiion.
Although this will eliminate some candidates, ingnhcases
there will remain many other architectural desighat are
capable of meeting the application’s functional deeThe
remainder differ by their relative emphasis on then-
functional requirements—the degree to which
architecture would support
architectural properties that have been identifischecessary
for the system. Since properties are created bypipdication
of architectural constraints, it is possible to leste and
compare different architectural designs by idemiifthe
constraints within each architecture, evaluating get of
properties induced by each constraint, and comgatie
cumulative properties of the design to those pitigser
required of the application.

style is a coordinated set of architectural comstsathat has
been given a name for ease of reference. Eachtectimal
design decision can be seen as an applicatiorspfi@ Since
the addition of a constraint may derive a new stywe can
think of the space of all possible architecturallest as a
derivation tree, with its root being the null styEmpty set of
constraints). When their constraints do not cofktyles can
be combined to form hybrid styles, eventually culating in a
hybrid style that represents a complete abstractibrthe
architectural design. An architectural design daerdfore be
analyzed by breaking-down its set of constraint® i
derivation tree and evaluating the cumulative effet the
constraints represented by that tree. If we undedstthe
properties induced by each basic style, then tsavgrthe
derivation tree gives us an understanding of therall/
design’s architectural properties. The specific dse®f an
application can then be matched against the priepeof the
design. Comparison becomes a relatively simple enatf
identifying which architectural design satisfiese thmost
desired properties for that application.

Architectural Properties of Key Interest: This section
describes the architectural properties used temifftiate and
classify architectural styles in this dissertatidh.is not
intended to be a comprehensive list. | have indudaly
those properties that are clearly influenced by riwricted
set of styles surveyed. Additional properties, simes
referred to as software qualities, are covered bystm
textbooks on software engineering. Bass et al exami
qualities in regards to software architecture.

3. NETWORK-BASED ARCHITECTURAL
STYLES

This chapter presents a survey of common architgcstlyles
for network-based application software within asslication
framework that evaluates each style according te th
architectural properties it would induce if applietd
architecture for a prototypical network-based hypedia
system.

Classification Methodology: The purpose of building
software is not to create a specific topology déiiactions or
use a particular component type — it is to creadgsdem that
meets or exceeds the application needs. The artlniad
styles chosen for a system’s design must confornthtse
needs, not the other way around. Therefore, inrdaprovide
useful design guidance, a classification of architeal styles

eaclshould be based on the architectural propertiescied by
the various non-funalon those styles.

Pipe and Filter (PF): In a pipe and filter style, each
component (filter) reads streams of data on itautmpand
produces streams of data on its outputs, usuallievapplying
a transformation to the input streams and procgstiem
incrementally so that output begins before the tinfsu
completely consumed. This style is also referredd@ one-
way data flow network [6]. The constraint is thdfileer must

As described in the previous chapter, an architattu be completely independent of other filters (zeropimg): it

34

I nter national Journal of Ethicsin Engineering & Management Education
Website: www.ijeeein (ISSN: 2348-4748, Volume 3, Issue 1, January 2016)

must not share state, control thread, or identith the other
filters on its upstream and downstream interfaces.

Abowd et al. [1] provide an extensive formal deston
of the pipe and filter style using the Z languagke Khoros
software development environment for image proogssi
provides a good example of using the pipe andrfitgle to
build a range of applications.

Garlan and Shaw describe the advantageous prapeftie
the pipe and filter style as follows. First, PFoals the
designer to understand the overall input/outputhef system
as a simple composition of the behaviors of thdviddal
filters (simplicity). Second, PF supports reusey dmo filters
can be hooked together, provided they agree oddteethat is
being transmitted between them (reusability). ThifF
systems can be easily maintained and enhanced:filiexs
can be added to existing systems(extensibility) alddfilters
can be replaced by improved ones (evolvability)urig they
permit certain kinds of specialized analysis (vabiity),
such as throughput and deadlock analysis. Finathgy
naturally support concurrent execution (user-peszbi
performance).

Disadvantages of the PF style include: propagatiElay

is added through long pipelines, batch sequentiatgssing
occurs if a filter cannot incrementally processititguts, and
no interactivity is allowed. A filter cannot intetawith its
environment because it cannot know that any pdaticutput
stream shares a controller with any particular ingpwmeam.
These properties decrease user-perceived perfoamiarhe
problem being addressed does not fit the patteendzfta flow
stream.
One aspect of PF styles that is rarely mention¢ldaisthere is
an implied “invisible hand” that arranges the cgofation of
filters in order to establish the overall applioati A network
of filters is typically arranged just prior to eaelttivation,
allowing the application to specify the configueattiof filter
components based on the task at hand and the natihe
data streams (configurability). This controller dtion is
considered a separate operational phase of thensystnd
hence a separate architecture, even though onetcemist
without the other.

Mobile Code Styles. Mobile code styles use mobility in order
to dynamically change the distance between theessiog
and source of data or destination of results. Thages are
comprehensively examined in Fuggetta et al. Aaiigtraction
is introduced at the architectural level, as pdrthe active
configuration, in order to take into account thealtion of the
different components. Introducing the concept ofaton
makes it possible to model the cost of an intevachetween
components at the design level. In particular, mteraction
between components that share the same location
considered to have negligible cost when comparedarto
interaction involving communication through thewetk. By
changing its location, a component may improvepttoximity
and quality of its interaction, reducing interaatioosts and
thereby improving efficiency and user-perceivedqrenance.

35

Limitations: Each architectural style promotes a certain type
of interaction among components. When componengs ar
distributed across a wide-area network, use or seixf the
network drives application usability. By characterg styles

by their influence on architectural properties, gadticularly

on the network-based application performance dftiluted
hypermedia system, we gain the ability to bettenosle a
software design that is appropriate for the appbica There
are, however, a couple limitations with the chosen
classification.

The first limitation is that the evaluation is sifiecto the
needs of distributed hypermedia. For example, mainthe
good qualities of the pipe-and-filter style disappef the
communication is fine-grained control messages, aednot
applicable at all if the communication requires ruse
interactivity. Likewise, layered caching only addslatency,
without any benefit, if none of the responses tentirequests
are cacheable. This type of distinction does ngieap in the
classification, and is only addressed informally the
discussion of each style. | believe this limitatican be
overcome by creating separate
classification tables for each type of communiaajiwoblem.
Example problem areas would include, among otHarge
grain data retrieval, remote information monitorirggarch,
remote control systems, and distributed proces#ngecond
limitation is with the grouping of architecturalgmerties. In
some cases, it is better to identify the specifipezts of, for
example, understandability and verifiability inddcéy an
architectural style, rather than lumping them tbgetunder
the rubric of simplicity. This is particularly thease for styles
which might improve verifiability at the expense of
understandability. However, the more abstract motid a
property also has value as a single metric, sineedw not
want to make the classification so specific thattwo styles
impact the same category. One solution would be
classification that presented both the specifipprties and a
summary property.

a

Classification of Architectural Styles and Patterns: The area
of research most directly related to this chapterthe
identification and classification of architecturstyles and
architecture-level patterns. Shaw describes a fewitactural
styles, later expanded in Garlan and Shaw. A preény
classification of these styles is presented in Shawd
Clements and repeated in Bass et al. [9], in whactwo-
dimensional, tabular classification strategy is duseith
control and data issues as the primary axes, argdrby the
following categories of features: which kinds offrgqmonents
and connectors are used in the style; how consrahiared,
allocated, and transferred among the componentg;data is
t®mmunicated through the system; how data and aontr
interact; and, what type of reasoning is compatibith the
style. The primary purpose of the taxonomy is &niify style
characteristics, rather than to assist in their ganison. It
concludes with a small set of “rules of thumb” afoan of
design guidance

I nter national Journal of Ethicsin Engineering & Management Education
Website: www.ijeeein (ISSN: 2348-4748, Volume 3, Issue 1, January 2016)

4. DESIGNING THE WEB ARCHITECTURE:
PROBLEMSAND INSIGHTS

This chapter presents the requirements of the Ww/fide
Web architecture and the problems faced in desigmind
evaluating proposed improvements to its key comopatian
protocols. | use the insights garnered from theveyurand
classification of architectural styles for netwdr&sed
hypermedia systems to hypothesize methods for dpivej an
architectural style that would be used to guide dbsign of
improvements for the modern Web architecture.

WWW Application Domain Requirements. Berners-Lee

An architectural style can be used to define thieciples
behind the Web architecture such that they aréleiso future
architects. As discussed in Chapter 1, a stylenaraed set of
constraints on architectural elements that indubesset of
properties desired of the architecture. The fitsjppsin my
approach, therefore, is to identify the constraptésed

5. REPRESENTATIONAL STATE TRANSFER
(REST)

This chapter introduces and elaborates the Repetiaral
State Transfer (REST) architectural style for distied
hypermedia systems, describing the software endige

writes that the “Web’s major goal was to be a sthareprinciples guiding REST and the interaction coristsa

information space through which people and machauesd
communicate.” What was needed was a way for petiple
store and structure their own information, whetbermmanent
or ephemeral in nature, such that it could be wsdb}
themselves and others, and to be able to referamck
structure the information stored by others so thabuld not
be necessary for everyone to keep and maintaih ¢ogées.

The intended end-users of this system were locategrocess,

around the world, at various university and govegntrhigh-
energy physics research labs connected via thenkiteTheir

chosen to retain those principles, while contrgstirem to the
constraints of other architectural styles. RESa Ig/brid style
derived from several of the network-based architettstyles
described in Chapter 3 and combined with additional
constraints that define a uniform connector intefaThe
software architecture framework of Chapter 1 isdusedefine

the architectural elements of REST and examine Eamp
connector, and data views of prototypical
architectures.

machines were a heterogeneous collection of tetmina Deriving REST: The design rationale behind the Web

workstations, servers and supercomputers, requaitngpdge
podge of operating system software and file formdtse
information ranged from personal research notes
organizational phone listings. The challenge wasudd a
system that would provide a universally consisistrface to
this structured information, available on as matatfprms as
possible, and incrementally deployable as new geapld
organizations joined the project. Problem Workingpups
within the Internet Engineering Taskforce were fedmto
work on the Web’s three primary standards: URI, RT&nd
HTML. The charter of these groups was to definestiigset of
existing architectural communication that was comipand
consistently implemented in the early Web architest
identify problems within that architecture, andnhspecify a
set of standards to solve those problems. Thisepted us
with a challenge: how do we introduce a new set
functionality to an architecture that is alreadydely
deployed, and how do we ensure that its introdnatioes not
adversely impact, or even destroy, the architetpn@perties
that have enabled the Web to succeed.

architecture can be described by an architectutgle s
consisting of the set of constraints applied tonelsts within
tahe architecture. By examining the impact of eachstraint
as it is added to the evolving style, we can idgnthe
properties induced by the Web’'s constraints. Addai
constraints can then be applied to form a new techiral
style that better reflects the desired properties anodern
Web architecture. This section provides a generahdew of
REST by walking through the process of derivingast an
architectural style. Later sections will describemiore detail
the specific constraints that compose the RESE styl

Starting with the Null Style There are two common
perspectives on the process of architectural desigether it
be for buildings or for software. The first is thatdesigner

ofstarts with nothing—a blank slate, whiteboard, ocawing

board—and builds-up an architecture from familiar
components until it satisfies the needs of thenitéel system.
The second is that a designer starts with the systeds as a
whole, without constraints, and then incrementaigntifies
and applies constraints to elements of the systeorder to

Approach: The early Web architecture was based on soliddifferentiate the design space and allow the fordeest

principles—separation of concerns, simplicity,
generality—but lacked an architectural descripti@md
rationale. The design was based on a set of infongertext
notes [14], two early papers oriented towards theeru
community [12, 13], and archived discussions on \tieb
developer community mailing list (www-talk@info.cech).
In reality, however, the only true description bétearly Web
architecture was found within the implementatioh$twww
(the CERN protocol library for clients and servers)osaic
(the NCSA browser client), and an assortment ofemoth
implementations that interoperated with them.

36

and influence system behavior to flow naturally, in tnany with

the system. Where the first emphasizes creativind a
unbounded vision, the second emphasizes restraidt a
understanding of the system context. REST has been
developed using the latter process. Figures thraoleglict this
graphically in terms of how the applied constraimtsuld
differentiate the process view of an architectue the
incremental set of constraints is applied.

The Null style (Figure 5-1) is simply an empty sdt
constraints. From an architectural perspective, rthi style
describes a system in which there are no distihgdis

I nter national Journal of Ethicsin Engineering & Management Education
Website: www.ijeee.in (1 SSN: 2348-4748, Volume 3, I ssue 1, January 2016)

boundaries between components. It is the starigf ffor our
description of REST.

. Supver
L. :

< B o
- 2

Fig.1.Client-Server

Client-Server: Thefirst constraints added to our hybrid st
are those of the clierserver architectural style, descrik
Separation of concerns is the principle behind thent-
server constraints. By separating the user interfaancern:
from the data storage concsrmve improve the portability «

the user interface across multiple platforms angbrawe
scalability by simplifying the server componentserips
most significant to the Web, however, is that thpasatior
allows the components to evolve independentthus
supporting Cache

In order to improve network efficiency, we add &
constraints to form the client-cachstateles-server style of
Section Cache constraints require that the data withi
respoise to a request be implicitly or explicitly labeled
cacheable or nmacheable. If a response is cacheable, tt
client cache is given the right to reuse that raspadata fo
later, equivalent requests.

The advantage of adding cache constraintthat they
have the potential to partially or completely elaie som
interactions, improving efficiency, scalability, danuse-
perceived performance by reducing the average dgten a
series of interactions. The trad#; however, is that a cacl
candecrease reliability if stale data within the cadiffers
significantly from the data that would have beetagied hac
the request been sent directly to the server.

The early Web architecture, as portrayed by thgrdia
in Figure, was defined by the client-cacttateles-server set
of constraints. That is, the design rationale presk for the
Web architecture prior to 1994 focused on statetdiesni-
server interaction for the exchange of static dcents ovel
the Internet. The protocols for commeating interactions ha
rudimentary support for noshared caches, but did r
constrain the interface to a consistent set of s¢ingafor all
resources. Instead, the Web relied on the use ajnamon
clientserver implementation library (CERN libwww)
maintain consistency across Web applicat

Developers of Web implementations had alre
exceeded the early design. In addition to staticudwents
requests could identify services that dynamicalgneratec
responses, such as imageps [Kevin Hughe and server-
side scripts [Rob McCool].Browsers

Work had also begun on intermediary componentsthe
form of proxies and shared caches, but extensionshé
protocols were needed iorder for them to communice
reliably. The following sections describe the coaisits addet

37

dumb PC Mac NeXT

ﬁ!ﬁﬁﬂ

Ardrassing scheme +-.ﬂnnw:m protacal + Format negakisfion ;

Servers/Gateways

Fig.2.Early WWW Architecture Diagra
to the Web's architectural style in order to guitlee
extensions that form the modern Web architec

Uniform Interface: The central feature that distinghes the
REST architectural style from other netw- based styles is
its emphasis on a uniform interface between compts. By
applying the software engineering principle of gality to
the component interface, the overall system arcthite is
simplified and the visibility of interactions improved.
Implementations

The tradesff, though, is that a uniform interface degra
efficiency, since information is transferred in targlardizec
form rather than one which is specific to an amtlan’s
need. The REST interface is designed to be efficieort
large- grain hypermedia data transfer, optimizing for
common case of the Web, but resulting in an interfdnat i<
not optimal for other forms of architectural intetian.

REST Architectural Elements: The Representational State
Transfer (REST) style is an abstraction of the igectural
elements within a distributed hypermedia system.SR
ignores the details of component implementation @nadocol
syntax in order to focus on the roles of conents, the
constraints upon their interaction with other comgrats, anc
their interpretation of significant data elementst
encompasses the fundamental constraints upon cants
connectors, and data that define the basis of theb
architecture, anchus the essence of its behavior as a net-
based application.

REST Architectural Views: Now that we have an
understanding of the REST architectural elementsdtation,
we can use architectural views to describe howetbenents
work together to forman architecture. Three types of v—
process, connector, and datare useful for illuminating the
design principles of REST.

I nter national Journal of Ethicsin Engineering & Management Education
Website: www.ijeeein (ISSN: 2348-4748, Volume 3, Issue 1, January 2016)

6. EXPERIENCE AND EVALUATION

Since 1994, the REST architectural style has bessd uo
guide the design and development of the architector the
modern Web. This chapter describes the experiemze
lessons learned from applying REST while authorthg
Internet standards for the Hypertext Transfer Rat¢HTTP)
and Uniform Resource Identifiers (URI), the two
specifications that define the generic interfacedudy all
component interactions on the Web, as well as fribm
deployment of these technologies in the form of ltbeww-
perl client library, the Apache HTTP Server Projeatd other
implementations of the protocol standards.

Standardizing the Web: As described in Chapter 4, the
motivation for developing REST was to create armigectural
model for how the Web should work, such that itldoserve
as the guiding framework for the Web protocol stadd.

which has changed since the early Web architecREST
was used to define the term resource for the Uiidsird, as
well as the overall semantics of the generic iatef for
manipulating resources via their representations.

REST Applied to HTTP: The Hypertext Transfer Protocol
(HTTP) has a special role in the Web architectwrdath the
primary application-level protocol for communicatio
between Web components and the only protocol dedign
specifically for the transfer of resource repreatans. Unlike
URI, there were a large number of changes needextder
for HTTP to support the modern Web architecturee Th
developers of HTTP implementations have been coatee

in their adoption of proposed enhancements, ands thu
extensions needed to be proven and subjected holestis
review before they could be deployed. REST was used
identify problems with the existing HTTP implemetidas,
specify an interoperable subset of that protocaHa$P/1.0

REST has been applied to describe the desired WeH9], analyze proposed extensions for HTTP/1.1, jpraide

architecture, help identify existing problems, cam
alternative solutions, and ensure that protocolersibns
would not violate the core constraints that make Web
successful. This work was done as part of the teter

motivating rationale for deploying HTTP/1.1.

The key problem areas in HTTP that were identifigd
REST included planning for the deployment of newtpcol
versions, separating message parsing from HTTP reama

Engineering Taskforce (IETF) and World Wide Weband the underlying transport layer (TCP), distishing

Consortium (W3C) efforts to define the architectstandards
for the Web: HTTP, URI, and HTML.

My involvement in the Web standards process begalate
1993, while developing the libwww-perl protocol ity that
served as the client connector interface for MOMiesp At

the time, the Web’s architecture was described ksetaof
informal hypertext notes, two early introductoryppes, draft
hypertext specifications representing proposedifeatfor the
Web (some of which had already been implementet),the
archive of the public www-talk mailing list that waised for
informal discussion among the participants in th&Vw

project worldwide. Each of

between authoritative and non-authoritative respsngine-
grained control of caching, and various aspectseofirotocol
that failed to be self-descriptive. REST has alserbused to
model the performance of Web applications basedHdnP
and anticipate the impact of such extensions asigtent
connections and content negotiation. Finally, RE&$ been
used to limit the scope of standardized HTTP exterssto
those that fit within the architectural model, eththan
allowing the applications that misuse HTTP to elyual
influence the standard.

the specifications wereTechnology Transfer: Although REST had its most direct

significantly out of date when compared with Webinfluence over the authoring of Web standards,dedion of

implementations, mostly due to the rapid evolutiéthe Web
after the introduction of the Mosaic graphical bsew
[NCSA]. Several experimental extensions had beateddo
HTTP to allow for proxies, but for the most paré throtocol
assumed a direct connection between the user agdrgither
an HTTP origin server or a gateway to legacy systebhere
was no awareness within the architecture of cagtpngxies,
or spiders, even though
available and running amok. Many other extensioreyew
being proposed for inclusion in the next versiorfstloe
protocols.

REST Applied to URI: Uniform Resource Identifiers (URI)
are both the simplest element of the Web architecamd the

its use as an architectural design model came ghrahe
deployment of the standards in the form of comnadigiade
implementations. My involvement in the definitiofi W/eb
standards began with development of the maintenasioet
MOMspider and its associated protocol library, Mawperl.
Modeled after the original libwww developed by TBerners-
Lee and the WWW project at CERN, libwww-perl proatta

implementations were ngadiluniform interface for making Web requests and mteting

Web responses for client applications written i tRerl
language [134]. It was the first Web protocol Ityrdo be
developed independent of the original CERN project,
reflecting a more modern interpretation of the Wiaerface
than was present in older code bases. This inert@came
the basis for designing REST.

most important. URI have been known by many namedibwww-perl consisted of a single request interfdlcat used

WWW addresses, Universal Document Identifiers, ©rgal
Resource Identifiers, and finally the combinatidnUmiform
Resource Locators (URL) and Names (URN). Aside fitem
name, the URI syntax has remained relatively ungédrsince
1992. However, the specification of Web addressis® a
defines the scope and semantics of what we meaasoyrce,

38

Perl's self-evaluating code features to dynamicédlgd the
appropriate transport protocol package based oadheme of
the requested URI. For example, when asked to nsake
“GET” request on the URL <http://www.ebuilt.com/>,
libwww-perl would extract the scheme from the URht{p”)
and use it to construct a call vavwhttp'request()using an

I nter national Journal of Ethicsin Engineering & Management Education
Website: www.ijeee.in (1 SSN: 2348-4748, Volume 3, I ssue 1, January 2016)

interface that was common to all types of resouft€ETP, validated prior to deployment.
FTP, WAIS, local files, etc.). In order to achieés generic REST is a coordinated set of architectural constsahat
interface, the library treated all calls in muck same way as attempts to minimize latency and network commuidcat
an HTTP proxy. It provided an interface using Pedta while at the same time maximizing the independeand
structures that had the same semantics as an Haqurest, scalability of component implementations. Thisdhiaved by
regardless of the type of resource. placing constraints on connector semantics whdrerattyles
have focused on component semantics. REST enabées t
Architectural Lessons. There are a number of general caching and reuse of interactions, dynamic sulabtlity of
architectural lessons to be learned from the moddieb components, and processing of actions by intermedia
architecture and the problems identified by REST. thereby meeting the needs of an Internet-scaleildiséd
hypermedia system.

Advantages of a Network-based API: What distinguishes the

modern Web from other middleware is the way in \whic REFERENCES

uses HTTP as a network-based Application Programmin

Interface (API). This was not always the case. dagy Web [1]. G. D. Abowd, R. Allen, and D. Garlan. Formalizirtgle to understand

; ; ; descriptions of software architectu®CM Transactions on Software
design made use of a library package, CERN libwasvthe Engineering and Methodologg(4), Oct. 1995, pp. 319-364.

single implementation library for all clients ananregers. [2]. A shorter version also appeared as: Using styleutderstand

CERN libwww provided a library-based API for buibdj descriptions of software architecture.Rroceedings of the First ACM
interoperable Web components. SIGSOFT Symposium on the Foundations of Softwaggn&egring
A library-based API provides a set of code entrjn{ (SIGSOFT'93)Los Angeles, CA, Dec. 1993, pp. 9-20.

[3]. Adobe Systems In®ostScript Language Reference Manusddison-

and associated symbol/ parameter sets so thatgaapnoner Wesley Publishing Company, Reading, Massachud@gs.
can use someone else’s code to do the dirty work of4]. C. AlexanderThe Timeless Way of Buildin@xford University Press,
maintaining the actual interface between like syste New York, 1979.

; ; [5]. C. Alexander, S. Ishikawa, M. Silverstein, M. Jasmi, |. Fiksdahl-
provided that the programmer obeys the architettara King, and S. AngelA Pattern LanguageOxford University Press,

language restrictions that come with that code. The \ew'York 1977.
assumption is that all sides of the communicatiem the same [6]. R. Allen and D. Garlan. A formal basis for architeal connection.

API, and therefore the internals of the interface anly ??Mlg;nsadions on Software Engineering and Mettgy, 6(3),

. " uly)

important to the API deveIOper and not the applm:at [7]. A shorter version also appeared as: Formalizinghitactural

developer. . _ o connection. InProceedings of the 16th International Conference on
The single library approach ended in 1993 becaudiel i Software EngineeringSorrento, Italy, May 1994, pp. 71-80.

not match the social dynamics of the organizatiowslved in [8]. Also as: Beyond Definition/Use: Architectural Irtennection. In

developing the Web. When the team at NCSA incredised Proceedings of the ACM Interface Definition Langeag/orkshop,

. Portland, OregorSIGPLAN Notices29(8), Aug. 1994.
pace of Web deveIOpmem with a much |arger deve(mIm [9]. G. Andrews. Paradigms for process interaction striiuted programs.

team than had ever been present at CERN, the libsworce ACM Computing Survey23(1), Mar. 1991, pp. 49-90.

was “forked” (split into separately maintained cdufeses) so [10]. F. Anklesaria, et al. The Internet Gopher proto¢al distributed
that the folks at NCSA would not have to wait foERN to ?gggmem search and retrieval protocditernet RFC 1436 Mar.
catch-up with their improvements. At the same time,|11) p. j Barrett, L. A Clarke, P. L. Tarr, A. E. Wis& framework for
independent developers such as myself began dewglop event-based software integratioACM Transactions on Software
protocol libraries for languages and platforms ngt Engineering and Methodolog§(4), Oct. 1996, pp. 378-421.

supported by the CERN code. The design of the Wabth [12]. L. B:?\ss, P._ Clements, and R KazméBoftware Architecture in
. . Practice.Addison Wesley, Reading, Mass., 1998.
shift from the development of a reference protdimhary to [13]. D. Batory, L. Coglianese, S. Shafer, and W. Tratze ADAGE

the development of a network-based API, extendihg t avionics reference architecture. Rmoceedings of AIAA Computing in
desired semantics of the Web across multiple pla$oand Aerospace 105an Antonio, 1995.
implementations [14]. T. Berners-Lee, R. Cailliau, and J.-F. Groff. Wowdde Web. Flyer
’ distributed at the3rd Joint European Networking Conference,
Innsbruck, Austria, May 1992.
CONCLUSION [15]. T. Berners-Lee, R. Cailliau, J.-F. Groff, and B.I&mann. World-
Wide Web: The information universeElectronic Networking:

At the beginning of our efforts within the Interrigngineering Efgﬁgéqgg'izcagf”;fgg Poli@(1), Meckler Publishing, Westport,

Taskforce to define the existing Hypertext Trandfeotocol 1] T. Bemers-Lee and R. Cailliau. World-Wide Web.Rroceedings of

(HTTP/1.0) [19] and design the extensions for thewn Computing in High Energy Physics 98nnecy, France, 23-27 Sep.
standards of HTTP/1.1 [42] and Uniform Resourcantdiers 1992. » _
(URI), | recognized the need for a model of how Werld [17]. T. Berners-Lee, R. Cailliau, C. Barker, and J.-Fofs W3 Project:

. - . Assorted design notes. Published on the Web, N@®2 1Archived at
Wide Web should work. This idealized model of the <http://www.w3.0rg/History/19921103-hypertext/hyfeet/WWW/

interactions within an overall Web application,eneéd to as WorkingNotes/Overview.html>, Sep. 2000.

the Representational State Transfer (REST) ardhbitgcstyle, [18]. T. Berners-Lee. Universal Resource Ildentifiers MWW. Internet RFC
; ; 1630,June 1994.

became the foundation for the modern Web architectu [19]. T. Berners-Lee, R. Cailliau, A. Luotonen, H. Frystyielsen, and A.

provid_ing the g_uiding principles by W_h_iCh flaws i_the Secret. The World-Wide WelCommunications of the ACMB7(8),
preexisting architecture could be identified andegzions Aug. 1994, pp. 76-82.

39

I nter national Journal of Ethicsin Engineering & Management Education
Website: www.ijeeein (ISSN: 2348-4748, Volume 3, Issue 1, January 2016)

[20]. T. Berners-Lee, L. Masinter, and M. McCabhill. Unifo Resource
Locators (URL).Internet RFC 1738Dec. 1994.

[21]. T. Berners-Lee and D. Connolly. Hypertext Markumgaage — 2.0.
Internet RFC 1866Nov. 1995.

[22]. T. Berners-Lee, R. T. Fielding, and H. F. Nielselypertext Transfer
Protocol — HTTP/1.0Internet RFC 1945Vay 1996.

[23]. T. Berners-Lee. WWW: Past, present, and futlEEE Computer,
29(10), Oct. 1996, pp. 69-77.

About the Authors:

Satyam Arragokula working as an Assistant
Professor in University College Of Science,
Saifabad, Hyderabad, he completed M.E From
Osmania University and Completed CSE
(MSC(IS)) from Osmania University,
Hyderabad.

‘ ‘ M. Yesu Ratnam working as an Assistant
m Professor in Nizam College, he completed
oy ~ M.Tech from JNTU Hyderabad and completed

\.,_7 | MCA from Osmania University Hyderabad

40

