

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 3, Issue 1, January 2016)

31

Architectural Styles and the Design of Network-
based Software Architectures

Satyam Arragokula M. Yesu Ratnam
Assistant Professor Assistant Professor

University College of Science Nizam College
Saifabad, O.U, Hyderabad, Ts Hyderabad, Ts, India

satya.anu11@gmail.com yesurathnammotamarry@gmail.com

Abstract: The World Wide Web has succeeded in large part
because its software architecture has been designed to meet the
needs of an Internet-scale distributed hypermedia system. The
Web has been iteratively developed over the past ten years
through a series of modifications to the standards that define its
architecture. In order to identify those aspects of the Web that
needed improvement and avoid undesirable modifications, a
model for the modern Web architecture was needed to guide its
design, definition, and deployment. Software architecture
research investigates methods for determining how best to
partition a system, how components identify and communicate
with each other, how information is communicated, how elements
of a system can evolve independently, and how all of the above
can be described using formal and informal notations. My work
is motivated by the desire to understand and evaluate the
architectural design of network- based application software
through principled use of architectural constraints, thereby
obtaining the functional, performance, and social properties
desired of architecture. An architectural style is a named,
coordinated set of architectural constraints. This dissertation
defines a framework for understanding software architecture via
architectural styles and demonstrates how styles can be used to
guide the architectural design of network-based application
software. A survey of architectural styles for network-based
applications is used to classify styles according to the
architectural properties they induce on architecture for
distributed hypermedia. I then introduce the Representational
State Transfer (REST) architectural style and describe how
REST has been used to guide the design and development of the
architecture for the modern Web.

Keywords: architecture, Web, HTTP, WWW, Code, Network,
HTML

1. INTRODUCTION

As predicted by Perry and Wolf, software architecture has
been a focal point for software engineering research in the
1990s. The complexity of modern software systems have
necessitated a greater emphasis on componentized systems,
where the implementation is partitioned into independent
components that communicate to perform a desired task.
Software architecture research investigates methods for
determining how best to partition a system, how components
identify and communicate with each other, how information is
communicated, how elements of a system can evolve
independently, and how all of the above can be described
using formal and informal notations.

A good architecture is not created in a vacuum. All

design decisions at the architectural level should be made
within the context of the functional, behavioral, and social
requirements of the system being designed, which is a
principle that applies equally to both software architecture and
the traditional field of building architecture. The guideline that
“form follows function” comes from hundreds of years of
experience with failed building projects, but is often ignored
by software practitioners. The funny bit within the Monty
Python sketch, cited above, is the absurd notion that an
architect, when faced with the goal of designing an urban
block of flats (apartments), would present a building design
with all the components of a modern slaughterhouse. It might
very well be the best slaughterhouse design ever conceived,
but that would be of little comfort to the prospective tenants as
they are whisked along hallways containing rotating knives.

The hyperbole of The Architects Sketch may seem
ridiculous, but consider how often we see software projects
begin with adoption of the latest fad in architectural design,
and only later discover whether or not the system requirements
call for such an architecture. Design-by-buzzword is a
common occurrence. At least some of this behavior within the
software industry is due to a lack of understanding of why a
given set of architectural constraints is useful. In other words,
the reasoning behind good software architectures is not
apparent to designers when those architectures are selected for
reuse.

This dissertation explores a junction on the frontiers of
two research disciplines in computer science: software and
networking. Software research has long been concerned with
the categorization of software designs and the development of
design methodologies, but has rarely been able to objectively
evaluate the impact of various design choices on system
behavior. Networking research, in contrast, is focused on the
details of generic communication behavior between systems
and improving the performance of particular communication
techniques, often ignoring the fact that changing the
interaction style of an application can have more impact on
performance than the communication protocols used for that
interaction. My work is motivated by the desire to understand
and evaluate the architectural design of network-based
application software through principled use of architectural
constraints, thereby obtaining the functional, performance, and
social properties desired of an architecture. When given a
name, a coordinated set of architectural constraints becomes
an architectural style.

The first three chapters of this dissertation define a

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 3, Issue 1, January 2016)

32

framework for understanding software architecture via
architectural styles, revealing how styles can be used to guide
the architectural design of network-based application software.
Common architectural styles are surveyed and classified
according to the architectural properties they induce when
applied to an architecture for network-based hypermedia. This
classification is used to identify a set of architectural
constraints that could be used to improve the architecture of
the early World Wide Web.

Software Architecture: In spite of the interest in software
architecture as a field of research, there is little agreement
among researchers as to what exactly should be included in
the definition of architecture. In many cases, this has led to
important aspects of architectural design being overlooked by
past research. This chapter defines a self-consistent
terminology for software architecture based on an
examination of existing definitions within the literature and
my own insight with respect to network-based application
architectures. Each definition, highlighted within a box for
ease of reference, is followed by a discussion of how it is
derived from, or compares to, related research.

Run-time Abstraction: Software architecture is an abstraction
of the run-time elements of a software system during some
phase of its operation. A system may be composed of many
levels of abstraction and many phases of operation, each with
its own software architecture. At the heart of software
architecture is the principle of abstraction: hiding some of the
details of a system through encapsulation in order to better
identify and sustain its properties. A complex system will
contain many levels of abstraction, each with its own
architecture. Architecture represents an abstraction of system
behavior at that level, such that architectural elements are
delineated by the abstract interfaces they provide to other
elements at that level . Within each element may be found
another architecture, defining the system of sub-elements that
implement the behavior represented by the parent element’s
abstract interface. This recursion of architectures continues
down to the most basic system elements: those that cannot be
decomposed into less abstract elements.

Perry and Wolf define processing elements as
“transformers of data,” while Shaw et al. describe components
as “the locus of computation and state.” This is further
clarified in Shaw and Clements “A component is a unit of
software that performs some function at run-time. Examples
include programs, objects, processes, and filters.” This raises
an important distinction between software architecture and
what is typically referred to as software structure: the former
is an abstraction of the run-time behavior of a software
system, whereas the latter is a property of the static software
source code. Although there are advantages to having the
modular structure of the source code match the decomposition
of behavior within a running system, there are also advantages
to having independent software components be implemented
using parts of the same code (e.g., shared libraries). We
separate the view of software architecture from that of the
source code in order to focus on the software’s run-time

characteristics independent of a given component’s
implementation. Therefore, architectural design and source
code structural design, though closely related, are separate
design activities. Unfortunately, some descriptions of software
architecture fail to make this distinction (e.g., [9]).

Elements: Software architecture is defined by a configuration
of architectural elements—components, connectors, and
data—constrained in their relationships in order to achieve a
desired set of architectural properties. A comprehensive
examination of the scope and intellectual basis for software
architecture can be found in Perry and Wolf. They present a
model that defines a software architecture as a set of
architectural elements that have a particular form, explicated
by a set of rationale. Architectural elements include
processing, data, and connecting elements. Form is defined by
the properties of the elements and the relationships among the
elements — that is, the constraints on the elements. The
rationale provides the underlying basis for the architecture by
capturing the motivation for the choice of architectural style,
the choice of elements, and the form.

My definitions for software architecture are an elaborated
version of those within the Perry and Wolf model, except that
I exclude rationale. Although rationale is an important aspect
of software architecture research and of architectural
description in particular, including it within the definition of
software architecture would imply that design documentation
is part of the run-time system. The presence or absence of
rationale can influence the evolution of an architecture, but,
once constituted, the architecture is independent of its reasons
for being. Reflective systems can use the characteristics of
past performance to change future behavior, but in doing so
they are replacing one lower- level architecture with another
lower-level architecture, rather than encompassing rationale
within those architectures.

Configurations: A configuration is the structure of
architectural relationships among components, connectors,
and data during a period of system run-time. Abowd et al. [1]
define architectural description as supporting the description
of systems in terms of three basic syntactic classes:
components, which are the locus of computation; connectors,
which define the interactions between components; and
configurations, which are collections of interacting
components and connectors. Various style-specific concrete
notations may be used to represent these visually, facilitate
the description of legal computations and interactions, and
constrain the set of desirable systems.

Strictly speaking, one might think of a configuration as
being equivalent to a set of specific constraints on component
interaction. For example, Perry and Wolf include topology in
their definition of architectural form relationships. However,
separating the active topology from more general constraints
allows an architect to more easily distinguish the active
configuration from the potential domain of all legitimate
configurations. Additional rationale for distinguishing
configurations within architectural description languages is
presented in Medvidovic and Taylor .

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 3, Issue 1, January 2016)

33

Properties: The set of architectural properties of a software
architecture includes all properties that derive from the
selection and arrangement of components, connectors, and
data within the system. Examples include both the functional
properties achieved by the system and non-functional
properties, such as relative ease of evolution, reusability of
components, efficiency, and dynamic extensibility, often
referred to as quality attributes [9].

Properties are induced by the set of constraints within
architecture. Constraints are often motivated by the
application of a software engineering principle to an aspect of
the architectural elements. For example, the uniform pipe-and-
filter style obtains the qualities of reusability of components
and configurability of the application by applying generality to
its component interfaces — constraining the components to a
single interface type. Hence, the architectural constraint is
“uniform component interface,” motivated by the generality
principle, in order to obtain two desirable qualities that will
become the architectural properties of reusable and
configurable components when that style is instantiated within
an architecture.

The goal of architectural design is to create an
architecture with a set of architectural properties that form a
superset of the system requirements. The relative importance
of the various architectural properties depends on the nature of
the intended system. Section 2.3 examines the properties that
are of particular interest to network-based application
architectures.

Styles: An architectural style is a coordinated set of
architectural constraints that restricts the roles/features of
architectural elements and the allowed relationships among
those elements within any architecture that conforms to that
style. Since an architecture embodies both functional and non-
functional properties, it can be difficult to directly compare
architectures for different types of systems, or for even the
same type of system set in different environments. Styles are a
mechanism for categorizing architectures and for defining
their common characteristics. Each style provides an
abstraction for the interactions of components, capturing the
essence of a pattern of interaction by ignoring the incidental
details of the rest of the architecture.

Perry and Wolf define architectural style as an abstraction
of element types and formal aspects from various specific
architectures, perhaps concentrating on only certain aspects of
an architecture. An architectural style encapsulates important
decisions about the architectural elements and emphasizes
important constraints on the elements and their relationships.
This definition allows for styles that focus only on the
connectors of an architecture, or on specific aspects of the
component interfaces.

Patterns and Pattern Languages: In parallel with the
software engineering research in architectural styles, the
object- oriented programming community has been exploring
the use of design patterns and pattern languages to describe
recurring abstractions in object-based software development.
A design pattern is defined as an important and recurring

system construct. A pattern language is a system of patterns
organized in a structure that guides the patterns’ application.
Both concepts are based on the writings of Alexander et al
with regard to building architecture.

The design space of patterns includes implementation
concerns specific to the techniques of object-oriented
programming, such as class inheritance and interface
composition, as well as the higher-level design issues
addressed by architectural styles. In some cases, architectural
style descriptions have been recast as architectural patterns.
However, a primary benefit of patterns is that they can
describe relatively complex protocols of interactions between
objects as a single abstraction, thus including both constraints
on behavior and specifics of the implementation. In general, a
pattern, or pattern language in the case of multiple integrated
patterns, can be thought of as a recipe for implementing a
desired set of interactions among objects. In other words, a
pattern defines a process for solving a problem by following a
path of design and implementation choices.

2. NETWORK-BASED APPLICATION
ARCHITECTURES

This chapter continues our discussion of background material
by focusing on network- based application architectures and
describing how styles can be used to guide their architectural
design.

Scope: Architecture is found at multiple levels within
software systems. This dissertation examines the highest level
of abstraction in software architecture, where the interactions
among components are capable of being realized in network
communication. We limit our discussion to styles for
network-based application architectures in order to reduce the
dimensions of variance among the styles studied.
Network-based vs. Distributed: The primary distinction
between network-based architectures and software
architectures in general is that communication between
components is restricted to message passing [6], or the
equivalent of message passing if a more efficient mechanism
can be selected at runtime based on the location of
components.

Tanenbaum and van Renesse make a distinction between
distributed systems and network-based systems: a distributed
system is one that looks to its users like an ordinary
centralized system, but runs on multiple, independent CPUs.
In contrast, network-based systems are those capable of
operation across a network, but not
necessarily in a fashion that is transparent to the user. In some
cases it is desirable for the user to be aware of the difference
between an action that requires a network request and one that
is satisfiable on their local system, particularly when network
usage implies an extra transaction cost. This dissertation
covers network-based systems by not limiting the candidate
styles to those that preserve transparency for the user.

Application Software vs. Networking Software: Another
restriction on the scope of this dissertation is that we limit our

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 3, Issue 1, January 2016)

34

discussion to application architectures, excluding the operating
system, networking software, and some architectural styles
that would only use a network for system support (e.g.,
process control styles). Applications represent the “business-
aware” functionality of a system.

Application software architecture is an abstraction level
of an overall system, in which the goals of a user action are
representable as functional architectural properties. For
example, a hypermedia application must be concerned with
the location of information pages, performing requests, and
rendering data streams. This is in contrast to a networking
abstraction, where the goal is to move bits from one location
to another without regard to why those bits are being moved.
It is only at the application level that we can evaluate design
trade-offs based on the number of interactions per user action,
the location of application state, the effective throughput of all
data streams (as opposed to the potential throughput of a
single data stream), the extent of communication being
performed per user action, etc.

Evaluating the Design of Application Architectures: One of
the goals of this dissertation is to provide design guidance for
the task of selecting or creating the most appropriate
architecture for a given application domain, keeping in mind
that an architecture is the realization of an architectural design
and not the design itself. An architecture can be evaluated by
its run-time characteristics, but we would obviously prefer an
evaluation mechanism that could be applied to the candidate
architectural designs before having to implement all of them.
Unfortunately, architectural designs are notoriously hard to
evaluate and compare in an objective manner. Like most
artifacts of creative design, architectures are normally
presented as a completed work, as if the design simply sprung
fully-formed from the architect’s mind. In order to evaluate an
architectural design, we need to examine the design rationale
behind the constraints it places on a system, and compare the
properties derived from those constraints to the target
application’s objectives.

The first level of evaluation is set by the application’s
functional requirements. For example, it makes no sense to
evaluate the design of a process control architecture against
the requirements of a distributed hypermedia system, since the
comparison is moot if the architecture would not function.
Although this will eliminate some candidates, in most cases
there will remain many other architectural designs that are
capable of meeting the application’s functional needs. The
remainder differ by their relative emphasis on the non-
functional requirements—the degree to which each
architecture would support the various non-functional
architectural properties that have been identified as necessary
for the system. Since properties are created by the application
of architectural constraints, it is possible to evaluate and
compare different architectural designs by identifying the
constraints within each architecture, evaluating the set of
properties induced by each constraint, and comparing the
cumulative properties of the design to those properties
required of the application.

As described in the previous chapter, an architectural

style is a coordinated set of architectural constraints that has
been given a name for ease of reference. Each architectural
design decision can be seen as an application of a style. Since
the addition of a constraint may derive a new style, we can
think of the space of all possible architectural styles as a
derivation tree, with its root being the null style (empty set of
constraints). When their constraints do not conflict, styles can
be combined to form hybrid styles, eventually culminating in a
hybrid style that represents a complete abstraction of the
architectural design. An architectural design can therefore be
analyzed by breaking-down its set of constraints into a
derivation tree and evaluating the cumulative effect of the
constraints represented by that tree. If we understand the
properties induced by each basic style, then traversing the
derivation tree gives us an understanding of the overall
design’s architectural properties. The specific needs of an
application can then be matched against the properties of the
design. Comparison becomes a relatively simple matter of
identifying which architectural design satisfies the most
desired properties for that application.
Architectural Properties of Key Interest: This section
describes the architectural properties used to differentiate and
classify architectural styles in this dissertation. It is not
intended to be a comprehensive list. I have included only
those properties that are clearly influenced by the restricted
set of styles surveyed. Additional properties, sometimes
referred to as software qualities, are covered by most
textbooks on software engineering. Bass et al examine
qualities in regards to software architecture.

3. NETWORK-BASED ARCHITECTURAL
STYLES

This chapter presents a survey of common architectural styles
for network-based application software within a classification
framework that evaluates each style according to the
architectural properties it would induce if applied to
architecture for a prototypical network-based hypermedia
system.

Classification Methodology: The purpose of building
software is not to create a specific topology of interactions or
use a particular component type — it is to create a system that
meets or exceeds the application needs. The architectural
styles chosen for a system’s design must conform to those
needs, not the other way around. Therefore, in order to provide
useful design guidance, a classification of architectural styles
should be based on the architectural properties induced by
those styles.

Pipe and Filter (PF): In a pipe and filter style, each
component (filter) reads streams of data on its inputs and
produces streams of data on its outputs, usually while applying
a transformation to the input streams and processing them
incrementally so that output begins before the input is
completely consumed. This style is also referred to as a one-
way data flow network [6]. The constraint is that a filter must
be completely independent of other filters (zero coupling): it

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 3, Issue 1, January 2016)

35

must not share state, control thread, or identity with the other
filters on its upstream and downstream interfaces.

Abowd et al. [1] provide an extensive formal description
of the pipe and filter style using the Z language. The Khoros
software development environment for image processing
provides a good example of using the pipe and filter style to
build a range of applications.

Garlan and Shaw describe the advantageous properties of
the pipe and filter style as follows. First, PF allows the
designer to understand the overall input/output of the system
as a simple composition of the behaviors of the individual
filters (simplicity). Second, PF supports reuse: any two filters
can be hooked together, provided they agree on the data that is
being transmitted between them (reusability). Third, PF
systems can be easily maintained and enhanced: new filters
can be added to existing systems(extensibility) and old filters
can be replaced by improved ones (evolvability). Fourth, they
permit certain kinds of specialized analysis (verifiability),
such as throughput and deadlock analysis. Finally, they
naturally support concurrent execution (user-perceived
performance).

Disadvantages of the PF style include: propagation delay
is added through long pipelines, batch sequential processing
occurs if a filter cannot incrementally process its inputs, and
no interactivity is allowed. A filter cannot interact with its
environment because it cannot know that any particular output
stream shares a controller with any particular input stream.
These properties decrease user-perceived performance if the
problem being addressed does not fit the pattern of a data flow
stream.
One aspect of PF styles that is rarely mentioned is that there is
an implied “invisible hand” that arranges the configuration of
filters in order to establish the overall application. A network
of filters is typically arranged just prior to each activation,
allowing the application to specify the configuration of filter
components based on the task at hand and the nature of the
data streams (configurability). This controller function is
considered a separate operational phase of the system, and
hence a separate architecture, even though one cannot exist
without the other.

Mobile Code Styles: Mobile code styles use mobility in order
to dynamically change the distance between the processing
and source of data or destination of results. These styles are
comprehensively examined in Fuggetta et al. A site abstraction
is introduced at the architectural level, as part of the active
configuration, in order to take into account the location of the
different components. Introducing the concept of location
makes it possible to model the cost of an interaction between
components at the design level. In particular, an interaction
between components that share the same location is
considered to have negligible cost when compared to an
interaction involving communication through the network. By
changing its location, a component may improve the proximity
and quality of its interaction, reducing interaction costs and
thereby improving efficiency and user-perceived performance.

Limitations: Each architectural style promotes a certain type
of interaction among components. When components are
distributed across a wide-area network, use or misuse of the
network drives application usability. By characterizing styles
by their influence on architectural properties, and particularly
on the network-based application performance of a distributed
hypermedia system, we gain the ability to better choose a
software design that is appropriate for the application. There
are, however, a couple limitations with the chosen
classification.

The first limitation is that the evaluation is specific to the
needs of distributed hypermedia. For example, many of the
good qualities of the pipe-and-filter style disappear if the
communication is fine-grained control messages, and are not
applicable at all if the communication requires user
interactivity. Likewise, layered caching only adds to latency,
without any benefit, if none of the responses to client requests
are cacheable. This type of distinction does not appear in the
classification, and is only addressed informally in the
discussion of each style. I believe this limitation can be
overcome by creating separate
classification tables for each type of communication problem.
Example problem areas would include, among others, large
grain data retrieval, remote information monitoring, search,
remote control systems, and distributed processing. A second
limitation is with the grouping of architectural properties. In
some cases, it is better to identify the specific aspects of, for
example, understandability and verifiability induced by an
architectural style, rather than lumping them together under
the rubric of simplicity. This is particularly the case for styles
which might improve verifiability at the expense of
understandability. However, the more abstract notion of a
property also has value as a single metric, since we do not
want to make the classification so specific that no two styles
impact the same category. One solution would be a
classification that presented both the specific properties and a
summary property.

Classification of Architectural Styles and Patterns: The area
of research most directly related to this chapter is the
identification and classification of architectural styles and
architecture-level patterns. Shaw describes a few architectural
styles, later expanded in Garlan and Shaw. A preliminary
classification of these styles is presented in Shaw and
Clements and repeated in Bass et al. [9], in which a two-
dimensional, tabular classification strategy is used with
control and data issues as the primary axes, organized by the
following categories of features: which kinds of components
and connectors are used in the style; how control is shared,
allocated, and transferred among the components; how data is
communicated through the system; how data and control
interact; and, what type of reasoning is compatible with the
style. The primary purpose of the taxonomy is to identify style
characteristics, rather than to assist in their comparison. It
concludes with a small set of “rules of thumb” as a form of
design guidance

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 3, Issue 1, January 2016)

36

4. DESIGNING THE WEB ARCHITECTURE:
PROBLEMS AND INSIGHTS

This chapter presents the requirements of the World Wide
Web architecture and the problems faced in designing and
evaluating proposed improvements to its key communication
protocols. I use the insights garnered from the survey and
classification of architectural styles for network-based
hypermedia systems to hypothesize methods for developing an
architectural style that would be used to guide the design of
improvements for the modern Web architecture.

WWW Application Domain Requirements: Berners-Lee
writes that the “Web’s major goal was to be a shared
information space through which people and machines could
communicate.” What was needed was a way for people to
store and structure their own information, whether permanent
or ephemeral in nature, such that it could be usable by
themselves and others, and to be able to reference and
structure the information stored by others so that it would not
be necessary for everyone to keep and maintain local copies.

The intended end-users of this system were located
around the world, at various university and government high-
energy physics research labs connected via the Internet. Their
machines were a heterogeneous collection of terminals,
workstations, servers and supercomputers, requiring a hodge
podge of operating system software and file formats. The
information ranged from personal research notes to
organizational phone listings. The challenge was to build a
system that would provide a universally consistent interface to
this structured information, available on as many platforms as
possible, and incrementally deployable as new people and
organizations joined the project. Problem Working groups
within the Internet Engineering Taskforce were formed to
work on the Web’s three primary standards: URI, HTTP, and
HTML. The charter of these groups was to define the subset of
existing architectural communication that was commonly and
consistently implemented in the early Web architecture,
identify problems within that architecture, and then specify a
set of standards to solve those problems. This presented us
with a challenge: how do we introduce a new set of
functionality to an architecture that is already widely
deployed, and how do we ensure that its introduction does not
adversely impact, or even destroy, the architectural properties
that have enabled the Web to succeed.

Approach: The early Web architecture was based on solid
principles—separation of concerns, simplicity, and
generality—but lacked an architectural description and
rationale. The design was based on a set of informal hypertext
notes [14], two early papers oriented towards the user
community [12, 13], and archived discussions on the Web
developer community mailing list (www-talk@info.cern.ch).
In reality, however, the only true description of the early Web
architecture was found within the implementations of libwww
(the CERN protocol library for clients and servers), Mosaic
(the NCSA browser client), and an assortment of other
implementations that interoperated with them.

An architectural style can be used to define the principles
behind the Web architecture such that they are visible to future
architects. As discussed in Chapter 1, a style is a named set of
constraints on architectural elements that induces the set of
properties desired of the architecture. The first step in my
approach, therefore, is to identify the constraints placed

5. REPRESENTATIONAL STATE TRANSFER
(REST)

This chapter introduces and elaborates the Representational
State Transfer (REST) architectural style for distributed
hypermedia systems, describing the software engineering
principles guiding REST and the interaction constraints
chosen to retain those principles, while contrasting them to the
constraints of other architectural styles. REST is a hybrid style
derived from several of the network-based architectural styles
described in Chapter 3 and combined with additional
constraints that define a uniform connector interface. The
software architecture framework of Chapter 1 is used to define
the architectural elements of REST and examine sample
process, connector, and data views of prototypical
architectures.

Deriving REST: The design rationale behind the Web
architecture can be described by an architectural style
consisting of the set of constraints applied to elements within
the architecture. By examining the impact of each constraint
as it is added to the evolving style, we can identify the
properties induced by the Web’s constraints. Additional
constraints can then be applied to form a new architectural
style that better reflects the desired properties of a modern
Web architecture. This section provides a general overview of
REST by walking through the process of deriving it as an
architectural style. Later sections will describe in more detail
the specific constraints that compose the REST style.

Starting with the Null Style: There are two common
perspectives on the process of architectural design, whether it
be for buildings or for software. The first is that a designer
starts with nothing—a blank slate, whiteboard, or drawing
board—and builds-up an architecture from familiar
components until it satisfies the needs of the intended system.
The second is that a designer starts with the system needs as a
whole, without constraints, and then incrementally identifies
and applies constraints to elements of the system in order to
differentiate the design space and allow the forces that
influence system behavior to flow naturally, in harmony with
the system. Where the first emphasizes creativity and
unbounded vision, the second emphasizes restraint and
understanding of the system context. REST has been
developed using the latter process. Figures through depict this
graphically in terms of how the applied constraints would
differentiate the process view of an architecture as the
incremental set of constraints is applied.

The Null style (Figure 5-1) is simply an empty set of
constraints. From an architectural perspective, the null style
describes a system in which there are no distinguished

International Journal of
Website: www.ijeee.in

boundaries between components. It is the starting point for our
description of REST.

Fig.1.Client-Server

Client-Server: The first constraints added to our hybrid style
are those of the client-server architectural style, described
Separation of concerns is the principle behind the client
server constraints. By separating the user interface concerns
from the data storage concerns, we improve the portability of

the user interface across multiple platforms and improve
scalability by simplifying the server components. Perhaps
most significant to the Web, however, is that the separation
allows the components to evolve independently,
supporting Cache
In order to improve network efficiency, we add cache
constraints to form the client-cache- stateless
Section. Cache constraints require that the data within a
response to a request be implicitly or explicitly labeled as
cacheable or noncacheable. If a response is cacheable, then a
client cache is given the right to reuse that response data for
later, equivalent requests.

The advantage of adding cache constraints is
have the potential to partially or completely eliminate some
interactions, improving efficiency, scalability, and user
perceived performance by reducing the average latency of a
series of interactions. The trade-off, however, is that a cache
can decrease reliability if stale data within the cache differs
significantly from the data that would have been obtained had
the request been sent directly to the server.

The early Web architecture, as portrayed by the diagram
in Figure, was defined by the client-cache-stateless
of constraints. That is, the design rationale presented for the
Web architecture prior to 1994 focused on stateless client
server interaction for the exchange of static documents over
the Internet. The protocols for communicating interactions had
rudimentary support for non-shared caches, but did not
constrain the interface to a consistent set of semantics for all
resources. Instead, the Web relied on the use of a common
client-server implementation library (CERN libwww) to
maintain consistency across Web applications.

Developers of Web implementations had already
exceeded the early design. In addition to static documents,
requests could identify services that dynamically generated
responses, such as image-maps [Kevin Hughes]
side scripts [Rob McCool].Browsers

Work had also begun on intermediary components, in the
form of proxies and shared caches, but extensions to the
protocols were needed in order for them to communicate
reliably. The following sections describe the constraints added

 Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 3, Issue 1, January 2016

37

boundaries between components. It is the starting point for our

first constraints added to our hybrid style
server architectural style, described

Separation of concerns is the principle behind the client-
server constraints. By separating the user interface concerns

s, we improve the portability of

the user interface across multiple platforms and improve
scalability by simplifying the server components. Perhaps
most significant to the Web, however, is that the separation
allows the components to evolve independently, thus

In order to improve network efficiency, we add cache
stateless-server style of

. Cache constraints require that the data within a
se to a request be implicitly or explicitly labeled as

cacheable. If a response is cacheable, then a
client cache is given the right to reuse that response data for

The advantage of adding cache constraints is that they
have the potential to partially or completely eliminate some
interactions, improving efficiency, scalability, and user-
perceived performance by reducing the average latency of a

off, however, is that a cache
decrease reliability if stale data within the cache differs

significantly from the data that would have been obtained had

The early Web architecture, as portrayed by the diagram
stateless-server set

of constraints. That is, the design rationale presented for the
Web architecture prior to 1994 focused on stateless client-
server interaction for the exchange of static documents over

cating interactions had
shared caches, but did not

constrain the interface to a consistent set of semantics for all
resources. Instead, the Web relied on the use of a common

server implementation library (CERN libwww) to
maintain consistency across Web applications.

Developers of Web implementations had already
exceeded the early design. In addition to static documents,
requests could identify services that dynamically generated

maps [Kevin Hughes] and server-

Work had also begun on intermediary components, in the
form of proxies and shared caches, but extensions to the

n order for them to communicate
reliably. The following sections describe the constraints added

to the Web’s architectural style in order to guide the
extensions that form the modern Web architecture.

Uniform Interface: The central feature that distinguis
REST architectural style from other network
its emphasis on a uniform interface between components
applying the software engineering principle of generality to
the component interface, the overall system architecture is
simplified and the visibility of interactions is
Implementations
The trade-off, though, is that a uniform interface degrades
efficiency, since information is transferred in a standardized
form rather than one which is specific to an application’s
needs. The REST interface is designed to be efficient for
large- grain hypermedia data transfer, optimizing for the
common case of the Web, but resulting in an interface that is
not optimal for other forms of architectural interaction.

REST Architectural Elements
Transfer (REST) style is an abstraction of the architectural
elements within a distributed hypermedia system. REST
ignores the details of component implementation and protocol
syntax in order to focus on the roles of compon
constraints upon their interaction with other components, and
their interpretation of significant data elements. It
encompasses the fundamental constraints upon components,
connectors, and data that define the basis of the Web
architecture, and thus the essence of its behavior as a network
based application.
REST Architectural Views
understanding of the REST architectural elements in isolation,
we can use architectural views to describe how the elements
work together to form an architecture. Three types of view
process, connector, and data—
design principles of REST.

 dumb PC Mac

Fig.2. Early WWW Architecture Diagram

Ethics in Engineering & Management Education
January 2016)

to the Web’s architectural style in order to guide the
extensions that form the modern Web architecture.

The central feature that distinguishes the
REST architectural style from other network- based styles is
its emphasis on a uniform interface between components. By
applying the software engineering principle of generality to
the component interface, the overall system architecture is

ied and the visibility of interactions is improved.

off, though, is that a uniform interface degrades
efficiency, since information is transferred in a standardized
form rather than one which is specific to an application’s

s. The REST interface is designed to be efficient for
grain hypermedia data transfer, optimizing for the

common case of the Web, but resulting in an interface that is
not optimal for other forms of architectural interaction.

ents: The Representational State
Transfer (REST) style is an abstraction of the architectural
elements within a distributed hypermedia system. REST
ignores the details of component implementation and protocol
syntax in order to focus on the roles of components, the
constraints upon their interaction with other components, and
their interpretation of significant data elements. It
encompasses the fundamental constraints upon components,
connectors, and data that define the basis of the Web

hus the essence of its behavior as a network-

REST Architectural Views: Now that we have an
understanding of the REST architectural elements in isolation,
we can use architectural views to describe how the elements

an architecture. Three types of view—
—are useful for illuminating the

Mac X NeXT

Early WWW Architecture Diagram

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 3, Issue 1, January 2016)

38

6. EXPERIENCE AND EVALUATION

Since 1994, the REST architectural style has been used to
guide the design and development of the architecture for the
modern Web. This chapter describes the experience and
lessons learned from applying REST while authoring the
Internet standards for the Hypertext Transfer Protocol (HTTP)
and Uniform Resource Identifiers (URI), the two
specifications that define the generic interface used by all
component interactions on the Web, as well as from the
deployment of these technologies in the form of the libwww-
perl client library, the Apache HTTP Server Project, and other
implementations of the protocol standards.

Standardizing the Web: As described in Chapter 4, the
motivation for developing REST was to create an architectural
model for how the Web should work, such that it could serve
as the guiding framework for the Web protocol standards.
REST has been applied to describe the desired Web
architecture, help identify existing problems, compare
alternative solutions, and ensure that protocol extensions
would not violate the core constraints that make the Web
successful. This work was done as part of the Internet
Engineering Taskforce (IETF) and World Wide Web
Consortium (W3C) efforts to define the architectural standards
for the Web: HTTP, URI, and HTML.
My involvement in the Web standards process began in late
1993, while developing the libwww-perl protocol library that
served as the client connector interface for MOM spider. At
the time, the Web’s architecture was described by a set of
informal hypertext notes, two early introductory papers, draft
hypertext specifications representing proposed features for the
Web (some of which had already been implemented), and the
archive of the public www-talk mailing list that was used for
informal discussion among the participants in the WWW
project worldwide. Each of the specifications were
significantly out of date when compared with Web
implementations, mostly due to the rapid evolution of the Web
after the introduction of the Mosaic graphical browser
[NCSA]. Several experimental extensions had been added to
HTTP to allow for proxies, but for the most part the protocol
assumed a direct connection between the user agent and either
an HTTP origin server or a gateway to legacy systems. There
was no awareness within the architecture of caching, proxies,
or spiders, even though implementations were readily
available and running amok. Many other extensions were
being proposed for inclusion in the next versions of the
protocols.

REST Applied to URI: Uniform Resource Identifiers (URI)
are both the simplest element of the Web architecture and the
most important. URI have been known by many names:
WWW addresses, Universal Document Identifiers, Universal
Resource Identifiers, and finally the combination of Uniform
Resource Locators (URL) and Names (URN). Aside from its
name, the URI syntax has remained relatively unchanged since
1992. However, the specification of Web addresses also
defines the scope and semantics of what we mean by resource,

which has changed since the early Web architecture. REST
was used to define the term resource for the URI standard, as
well as the overall semantics of the generic interface for
manipulating resources via their representations.

REST Applied to HTTP: The Hypertext Transfer Protocol
(HTTP) has a special role in the Web architecture as both the
primary application-level protocol for communication
between Web components and the only protocol designed
specifically for the transfer of resource representations. Unlike
URI, there were a large number of changes needed in order
for HTTP to support the modern Web architecture. The
developers of HTTP implementations have been conservative
in their adoption of proposed enhancements, and thus
extensions needed to be proven and subjected to standards
review before they could be deployed. REST was used to
identify problems with the existing HTTP implementations,
specify an interoperable subset of that protocol as HTTP/1.0
[19], analyze proposed extensions for HTTP/1.1, and provide
motivating rationale for deploying HTTP/1.1.

The key problem areas in HTTP that were identified by
REST included planning for the deployment of new protocol
versions, separating message parsing from HTTP semantics
and the underlying transport layer (TCP), distinguishing
between authoritative and non-authoritative responses, fine-
grained control of caching, and various aspects ofthe protocol
that failed to be self-descriptive. REST has also been used to
model the performance of Web applications based on HTTP
and anticipate the impact of such extensions as persistent
connections and content negotiation. Finally, REST has been
used to limit the scope of standardized HTTP extensions to
those that fit within the architectural model, rather than
allowing the applications that misuse HTTP to equally
influence the standard.

Technology Transfer: Although REST had its most direct
influence over the authoring of Web standards, validation of
its use as an architectural design model came through the
deployment of the standards in the form of commercial-grade
implementations. My involvement in the definition of Web
standards began with development of the maintenance robot
MOMspider and its associated protocol library, libwww-perl.
Modeled after the original libwww developed by Tim Berners-
Lee and the WWW project at CERN, libwww-perl provided a
uniform interface for making Web requests and interpreting
Web responses for client applications written in the Perl
language [134]. It was the first Web protocol library to be
developed independent of the original CERN project,
reflecting a more modern interpretation of the Web interface
than was present in older code bases. This interface became
the basis for designing REST.
libwww-perl consisted of a single request interface that used
Perl’s self-evaluating code features to dynamically load the
appropriate transport protocol package based on the scheme of
the requested URI. For example, when asked to make a
“GET” request on the URL <http://www.ebuilt.com/>,
libwww-perl would extract the scheme from the URL (“http”)
and use it to construct a call to wwwhttp’request(), using an

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 3, Issue 1, January 2016)

39

interface that was common to all types of resources (HTTP,
FTP, WAIS, local files, etc.). In order to achieve this generic
interface, the library treated all calls in much the same way as
an HTTP proxy. It provided an interface using Perl data
structures that had the same semantics as an HTTP request,
regardless of the type of resource.

Architectural Lessons: There are a number of general
architectural lessons to be learned from the modern Web
architecture and the problems identified by REST.

Advantages of a Network-based API: What distinguishes the
modern Web from other middleware is the way in which it
uses HTTP as a network-based Application Programming
Interface (API). This was not always the case. The early Web
design made use of a library package, CERN libwww, as the
single implementation library for all clients and servers.
CERN libwww provided a library-based API for building
interoperable Web components.

A library-based API provides a set of code entry points
and associated symbol/ parameter sets so that a programmer
can use someone else’s code to do the dirty work of
maintaining the actual interface between like systems,
provided that the programmer obeys the architectural and
language restrictions that come with that code. The
assumption is that all sides of the communication use the same
API, and therefore the internals of the interface are only
important to the API developer and not the application
developer.

The single library approach ended in 1993 because it did
not match the social dynamics of the organizations involved in
developing the Web. When the team at NCSA increased the
pace of Web development with a much larger development
team than had ever been present at CERN, the libwww source
was “forked” (split into separately maintained code bases) so
that the folks at NCSA would not have to wait for CERN to
catch-up with their improvements. At the same time,
independent developers such as myself began developing
protocol libraries for languages and platforms not yet
supported by the CERN code. The design of the Web had to
shift from the development of a reference protocol library to
the development of a network-based API, extending the
desired semantics of the Web across multiple platforms and
implementations.

CONCLUSION

At the beginning of our efforts within the Internet Engineering
Taskforce to define the existing Hypertext Transfer Protocol
(HTTP/1.0) [19] and design the extensions for the new
standards of HTTP/1.1 [42] and Uniform Resource Identifiers
(URI), I recognized the need for a model of how the World
Wide Web should work. This idealized model of the
interactions within an overall Web application, referred to as
the Representational State Transfer (REST) architectural style,
became the foundation for the modern Web architecture,
providing the guiding principles by which flaws in the
preexisting architecture could be identified and extensions

validated prior to deployment.
REST is a coordinated set of architectural constraints that

attempts to minimize latency and network communication
while at the same time maximizing the independence and
scalability of component implementations. This is achieved by
placing constraints on connector semantics where other styles
have focused on component semantics. REST enables the
caching and reuse of interactions, dynamic substitutability of
components, and processing of actions by intermediaries,
thereby meeting the needs of an Internet-scale distributed
hypermedia system.

REFERENCES

[1]. G. D. Abowd, R. Allen, and D. Garlan. Formalizing style to understand

descriptions of software architecture. ACM Transactions on Software
Engineering and Methodology, 4(4), Oct. 1995, pp. 319-364.

[2]. A shorter version also appeared as: Using style to understand
descriptions of software architecture. In Proceedings of the First ACM
SIGSOFT Symposium on the Foundations of Software Engineering
(SIGSOFT‘93), Los Angeles, CA, Dec. 1993, pp. 9-20.

[3]. Adobe Systems Inc. PostScript Language Reference Manual. Addison-
Wesley Publishing Company, Reading, Massachusetts, 1985.

[4]. C. Alexander. The Timeless Way of Building. Oxford University Press,
New York, 1979.

[5]. C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-
King, and S. Angel. A Pattern Language. Oxford University Press,
New York, 1977.

[6]. R. Allen and D. Garlan. A formal basis for architectural connection.
ACM Transactions on Software Engineering and Methodology, 6(3),
July 1997.

[7]. A shorter version also appeared as: Formalizing architectural
connection. In Proceedings of the 16th International Conference on
Software Engineering, Sorrento, Italy, May 1994, pp. 71-80.

[8]. Also as: Beyond Definition/Use: Architectural Interconnection. In
Proceedings of the ACM Interface Definition Language Workshop,
Portland, Oregon, SIGPLAN Notices, 29(8), Aug. 1994.

[9]. G. Andrews. Paradigms for process interaction in distributed programs.
ACM Computing Surveys, 23(1), Mar. 1991, pp. 49-90.

[10]. F. Anklesaria, et al. The Internet Gopher protocol (a distributed
document search and retrieval protocol). Internet RFC 1436, Mar.
1993.

[11]. D. J. Barrett, L. A. Clarke, P. L. Tarr, A. E. Wise. A framework for
event-based software integration. ACM Transactions on Software
Engineering and Methodology, 5(4), Oct. 1996, pp. 378-421.

[12]. L. Bass, P. Clements, and R. Kazman. Software Architecture in
Practice. Addison Wesley, Reading, Mass., 1998.

[13]. D. Batory, L. Coglianese, S. Shafer, and W. Tracz. The ADAGE
avionics reference architecture. In Proceedings of AIAA Computing in
Aerospace 10, San Antonio, 1995.

[14]. T. Berners-Lee, R. Cailliau, and J.-F. Groff. World Wide Web. Flyer
distributed at the 3rd Joint European Networking Conference,
Innsbruck, Austria, May 1992.

[15]. T. Berners-Lee, R. Cailliau, J.-F. Groff, and B. Pollermann. World-
Wide Web: The information universe. Electronic Networking:
Research, Applications and Policy, 2(1), Meckler Publishing, Westport,
CT, Spring 1992, pp. 52-58.

[16]. T. Berners-Lee and R. Cailliau. World-Wide Web. In Proceedings of
Computing in High Energy Physics 92, Annecy, France, 23-27 Sep.
1992.

[17]. T. Berners-Lee, R. Cailliau, C. Barker, and J.-F. Groff. W3 Project:
Assorted design notes. Published on the Web, Nov. 1992. Archived at
<http://www.w3.org/History/19921103-hypertext/hypertext/WWW/
WorkingNotes/Overview.html>, Sep. 2000.

[18]. T. Berners-Lee. Universal Resource Identifiers in WWW. Internet RFC
1630, June 1994.

[19]. T. Berners-Lee, R. Cailliau, A. Luotonen, H. Frystyk Nielsen, and A.
Secret. The World-Wide Web. Communications of the ACM, 37(8),
Aug. 1994, pp. 76-82.

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 3, Issue 1, January 2016)

40

[20]. T. Berners-Lee, L. Masinter, and M. McCahill. Uniform Resource
Locators (URL). Internet RFC 1738, Dec. 1994.

[21]. T. Berners-Lee and D. Connolly. Hypertext Markup Language — 2.0.
Internet RFC 1866, Nov. 1995.

[22]. T. Berners-Lee, R. T. Fielding, and H. F. Nielsen. Hypertext Transfer
Protocol — HTTP/1.0. Internet RFC 1945, May 1996.

[23]. T. Berners-Lee. WWW: Past, present, and future. IEEE Computer,
29(10), Oct. 1996, pp. 69-77.

About the Authors:

Satyam Arragokula working as an Assistant
Professor in University College Of Science,
Saifabad, Hyderabad, he completed M.E From
Osmania University and Completed CSE
(MSC(IS)) from Osmania University,
Hyderabad.

M. Yesu Ratnam working as an Assistant
Professor in Nizam College, he completed
M.Tech from JNTU Hyderabad and completed
MCA from Osmania University Hyderabad

