
 
 

International Journal of Ethics in Engineering & Management Education 
Website: www.ijeee.in (ISSN: 2348-4748, Volume 2, Issue 9, September 2015)  

40 

Efficient Architecture of Multiplier for Digital 
Filters 

 
Smitha N Mallya 

Department of Electronics & Telecommunication 
FCRIT, Vashi 

Navi Mumbai, Maharashtra, India 1smithamallya@yahoo.com 
 

   Sneha Revankar 
Department of Electronics & Telecommunication 

FCRIT, Vashi 
Navi Mumbai, Maharashtra, India 

Sneha.revankar@gmail.com 

Abstract - this paper presents a new architecture for multiplier 
unit.  The new high speed and low area architecture of multiplier 
unit is then implemented in FIR Filter. The method used in this 
paper employs Encoded Booth Algorithm resulting in speedy 
operation. Architecture of Regular CSA is modified for Area 
optimization.  Less area occupation makes the design consume 
less power. Multiplication plays a vital role in most of the high 
performance systems. By reducing the delay taken for 
calculations of results one can speed up the system performance. 
The methods include Modified Booth Multiplication along with 
carry select adder. Comparative study is done between normal 
multiplier-shift/add multiplier, encoded booth multipliers using 
RCSA and MCSA for Radix 8. The efficient among three is 
applied to filter structure and design is implemented on Spartan 
6 FPGA kit. The proposed designs are designed using Verilog 
HDL and synthesized, implemented using Xilinx ISE. 

Key Terms— Shift/add Multiplier, Encoded Booth’s Multiplier, 
RCSA, MCSA, Spartan 6 FPGA. 

I. INTRODUCTION  
Filters are widely used in various DSP applications. Few 

applications, will be such that the filter circuit must be able to 
operate at high sample rates, while in other applications, the 
filter circuit must act as a low-power circuit that operates at 
moderate sample rates. Hence major component that affects a 
filter is the multiplier circuitry. It also affects the resultant 
power consumption and speed. Thus choosing a multiplier 
with more hardware breadth rather than depth would not only 
reduce the delay, but also the total power consumption. A lot 
of design methods of low power digital filter have been 
proposed. They use a modified common sub expression 
elimination algorithm to reduce the number of adders used in 
the multiplication operation.  

Multiplication is a most commonly used operation in many 
computing systems. In fact multiplication is nothing but 
repetitive addition since, multiplicand adds to itself multiplier 
number of times gives the multiplication value between 
multiplier and multiplicand. But the facts that this kind of 
implementation shall take many hardware resources and make 
the circuit operate at utterly low speed. In order to address this 
issue so many ideas have been presented so far for the last 
three decades. Each one is aimed at a particular improvement 
according to the requirement. One may be aimed at high clock 
speeds and another may be aimed for low power consumption 
or less area occupation [1], [2]. Either way ultimate job is to 

come up with an efficient architecture which can address three 
constraints of VLSI speed, area, and power. Among these 
three, speed is the one  
Which requires most important and special attention? On 
observing closely, multiplication operation involves two major 
steps: one is producing partial products and other is adding 
these partial products. Thus, the speed of a multiplier hardly 
depends on how fast the partial products are generated and 
how fast we can add them together. If the numbers of partial 
products to be generated are less then it is indirectly means 
that we have achieved the speed in generating partial products. 
Booth’s algorithm is meant for achieving speed. To speed up 
the addition operation among the partial products, we need 
fast adder architectures. Since the multipliers have a 
significant impact on the performance of the entire system, 
one such high performance algorithms and architectures have 
been proposed by Renuka Narasimha, Rajasekhar and Sujana 
Rani [3]. 

The section II give a brief summary of FIR filter theory, 
section III presents FIR implementation which discusses the 
different multiplication architectures. Section IV discusses on 
simulation results. Section V is conclusion drawn between 
different multipliers and future work to be carried. 

II. DIGITAL FILTER THEORY 
Digital filters are main components that are usually used to 

modify or alter the attributes of a signal in the time or 
frequency domain. The linear time-invariant (LTI) filter is the 
most common digital filter. Interaction of an LTI system with 
input signal through a process called linear convolution, 
denoted by y = f * x where f is the filter’s impulse response, x 
is the input signal, and y is the convolved output. The linear 
convolution process is formally defined by:  
 
         Y[n] = x[n] * f[n] = 

 
   (1)  

LTI digital filters are generally classified as being finite 
impulse response (i.e., FIR), or infinite impulse response (i.e., 
IIR). An FIR filter is a filter whose impulse response settles to 
zero in finite time. An IIR filters may have an internal 
feedback and continue to respond indefinitely. As the name 
implies, an FIR filter consists of a finite number of sample 
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values, reducing the above convolution sum to a finite sum per 
output sample instant. An FIR with constant coefficients is an 
LTI digital filter. The output of an FIR of order or length L, to 
an input time-series x[n], is also given by a finite version of 
the convolution sum given in Eq (2), namely: 

         
      (2) 

                   
where f[0]  0 through f[L-1]  0 are the filter’s L 

coefficients. They also correspond to the FIR’s impulse 
response. For LTI systems it is sometimes more convenient to 
express in the z-domain with  

 
Y(z) = F(z) X(z)                       (3)                                            

 
Where F (z) is the FIR’s transfer function defined in the z-

domain by  
                  (4) 

                                           
The Lth-order LTI FIR filter is usually interpreted as shown 

in Figure.1. It comprises of large number of a “tapped delay 
line,” adders, and multipliers. One of the operands given to 
each multiplier is an FIR filter coefficient, often named as a 
“tap weight”. 

The FIR filter with transposed structure Figure.1 has 
registers between the adders and can achieve high throughput 
without adding any extra pineline registers. 
 

  
Figure 1: FIR filter in the transposed structure  

The multiplier is one of the essential elements of the digital 
signal processing such as filtering, convolution, and inner 
products. Most digital signal processing methods use nonlinear 
functions such as discrete cosine transform (DCT) or discrete 
wavelet transform (DWT). Because they involve repetitive 
application of multiplication and addition, the speed of the 
multiplication and addition determines the execution speed and 
performance of the entire calculation. Because the multiplier 
requires the longest delay among the basic operational blocks 
in digital system, the critical path is determined by the 
multiplier, in general. 

 Fast multipliers are an integral part of digital signal 
processing systems. Initially multiplication was generally 
implemented by sequence of addition and shift operations. 
Multiplication can be considered as a series of repeated 
additions. The number to be added is the multiplicand, the 
number of times that it is added is the multiplier, and the result 

is the product. Each step of addition generates a partial product. 
In most computers, the operand usually contains the same 
number of bits. Final product is usually reserved to be of length 
two times than the length of input data bits so as to no 
information is lost . This repeated addition method that is 
suggested by the arithmetic definition is slow.  It is almost 
always replaced by an algorithm that makes use of positional 
representation. It is possible to decompose multipliers into two 
parts. The first part is dedicated to the generation of partial 
products, and the second one collects and adds them. The basic 
multiplication principle is twofold i.e., evaluation of partial 
products and accumulation of the shifted partial products. It is 
performed by the successive additions of the columns of the 
shifted partial product matrix. The multiplier is successfully 
shifted and gates the appropriate bit of the multiplicand. The 
delayed, gated instance of the multiplicand must all be in the 
same column of the shifted partial product matrix. They are 
then added to form the final product. For high-speed 
multiplication, there are some of the methods discussed in this 
paper. 

A. Shift and Add Multiplier 
In this section we present a simple Shift and Add structure 

for multiplier used in filters [4]. Multiplication is performed 
by generating partial products and shifting the multiplicand 
left by one bit after every partial product calculation. The 
partial product of the current stage is set to the sum of the 
previous partial product and the shifted multiplicand of the 
current stage or 0, depending on whether the multiplier bit in 
the current stage is 1 or 0. Let MD be multiplicand and MR be 
he multiplier 

 
Reference Model: Shift-and-Add for 3-bit operands 
Stage 1:  

Rule a: product = prod+ MD if MR [0] exists else   
Rule b: product = product + 0 if MR [0] =0. 

Stage 2:  
Rule a: product = product + MD shifted left by 1 bit 

if MR [1] exits. 
Rule b: product = product + 0 if MR [0] =0.  

Stage 3: 
Rule a: product = product + MD shifted left by 2 bit 

if MR [2] exits. 
 
Rule b: product = product + 0 if MR [0] =0. 
 

        The same procedure is followed for n-bit multiplication.  
B .Modified Booth Multiplier 

In order to achieve high-speed, modified Booth algorithm 
has been presented in this section. Booth multiplication is a 
process that allows faster computation of results, by recoding 
the numbers that are to be multiplied [7]. It depends on radix 
we choose for recoding the multiplier bits. Radix 4 booth 
encoding leads to reduction in partial products by almost 50% 
.The method is, instead of shifting and adding multiplicand for 
every column of the multiplier bit and multiplying by 1 or 0, 
we group the multiplier bits, and multiply by ±1, ±2, or 0, to 
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obtain the same results. This algorithm can be used for signed 
numbers as well by taking negative number in two's 
complement notation. 

i. Radix-2 Multiplication 
 
The simple multiplication generator can be used to reduce 

the number of partial products by grouping the bits of the 
multiplier into pairs, and selecting the partial products from the 
set 0, +-M, where M is the multiplicand. Here the multiplier is 
grouped into two bits. Each encoded digit performs some 
operation on the multiplicand generating the partial product 
with the help of the selection Table 1. Each partial product is 
shifted one bit position to the left with respect to its neighbors. 
These partial products are then added to obtain the final 
product. 

 
          Table 1: Partial product selection table for radix 2 

Multiplier bits Selection 
00 0 
01 +M 
10 -M 
11 0 

 
ii. Radix -4 Multiplication 
The Radix-4 Modified Booth’s Algorithm reduces the 

number of partial products by about a factor of two. This 
selects the partial products from the set of 0, +-M, +-2M, where 
M is the multiplicand. The multiplier is appended by a ‘0’ on 
LSB; we will call this bit as Z. The multiplier is partitioned into 
overlapping groups of 3 bits, and each group is decoded to 
select a single partial product as per the selection Table 2. Each 
partial product is shifted 2 bit positions with respect to its 
neighbors. The number of partial products will be reduced from 
16 to 9 for a 16X16 multiplication. In general the there will be 
(n+2)/2 partial products, where n is the operand length. 

 
Table 2: Partial product selection table for radix 4 

 
Multiplier bits Selection 
000 0 
001 +MD 
010 +MD 
011 +2MD 
100 -2MD 
101 -MD 
110 -MD 
111 0 

 
 Figure 2: Recoding of multiplier 

 
Each block is decoded to generate the correct partial 

product. The encoding of the multiplier Y, using the modified 
booth algorithm, generates the following five signed digits, -2, 
-1, 0, +1, +2. Each encoded digit in the multiplier performs a 
certain operation on the multiplicand as illustrated in the Table 
2. 

The modified Booth’s algorithm (radix-4 recoding) starts 
by appending a zero to the right of x0 (multiplier LSB). 
Triplets, group of three bits are taken beginning at position x –1 and continuing to the MSB with one bit overlapping between 
adjacent triplet groups. If the number of bits in the multiplier 
(excluding x –1) is odd, the sign (MSB) is extended one 
position to ensure that the last triplet contains 3 bits. In every 
step we will get a signed digit that will multiply the 
multiplicand to generate a partial product entering the Carry 
select adder. 

 
Radix -8 Multiplication Radix-8 Booth Multiplication 
As a further enhancement we have implemented a next 

higher radix multiplier so that partial products are further 
reduced to {n+2)/3. It thus further reduces the area and 
contributes in reducing power consumption. The multiplier is 
partitioned into overlapping groups of 4 bits, and each group is 
decoded to select a single partial product as per the selection 
Table 3. Each partial product is shifted 3 bit positions with 
respect to its neighbors. The number of partial products will be 
reduced as compared to Radix-4. 

 
Table 3: Partial product selection table for radix 8 

Multiplier bits Selection Multiplier bits Selection 
0000 0 1000 -4 MD 
M0001 +MD 1001 -3 MD  
0010 + MD 1010 -3 MD 
0011 +2 MD  1011 -2 MD  
0100 +2 MD 1100 -2 MD 
0101 +3 MD 1101 - MD 
0110 +3 MD 1110 - MD 
0111 +4 MD 1111 0 

 
Proposed Architecture for Multiplication 

 Figure 3: Architecture for Booth Multiplication 
 The multiplier is designed so that it can take two n-bit inputs: 

the multiplier (MR) and the multiplicand (MD), and results in 
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producing the 2n-bit multiplication result of the two as its 
output. The architecture of the booth multiplier,  
Primarily consists of four major modules as shown in Fig.3. 
They are: 2's Complement Generator, Booth Encoder, Partial 
Product Generator and Carry Select Adder. The first block 
gives the twos complement form of input multiplier data it 
takes the multiplicand (MD) as its input and produces -MD as 
its output.  This is required when recoded multiplier bit 
signifies negative multiplication. 2's complement is generated 
by inverting all bits of the multiplicand and then adding 1 
using adder. The Partial Product Generator uses two control 
signals x and z produced by the Booth Encoder and uses these 
signals to  choose from and extend signs of  '0', MD,-
MD,2MD or -2MD for creating  partial products.. The final 
intermediate results are added using a Carry Select 
Adder. Carry select Adder (CSA) adds two numbers with very 
lower latency. The carry Select adder will avoid the unwanted 
addition and thus minimize the switching power dissipation. 
Carry select adder is one of the fastest adders among parallel 
adders.CSA is made up of RCA arrays.  
 

 Figure 4:  16-Bit Regular Carry Select Adder Schematic  
CSA is faster adder when compared to RCA .The only 
parameter to be taken care of now is to reduce the gate counts 
so as to reduce the area occupied. New architecture is 
proposed where in second row of RCA’s are replaced by 
Binary to Excess one converter. The number of gate used in 
BEC is less compared to gates in RCA .The structure of Carry 
Select Adder using binary to excess 1 converter for RCA with 
Cin=1 to optimize the area and power is shown in Figure 3.13. 
BEC gets n inputs and generates n outputs for binary values 
without carry and n+1 output for binary values with carry. 
Large bit sized multipliers requires multiple BEC and each of 
them requires the selection input from the carry output of the 
preceding BEC. In this project expecting for maximum 
possible data and that carry will be generated we are replacing 
the RCAs having Cin =1 by BEC. Thus n bit RCA is replaced 
by n+1 bit BEC In our proposed method the carry Cin =1 
RCA is replaced by the (n+1) bit BEC. The area is optimized 
by replacing regular CSA with new structure where in second  
array of RCAs are replaced with Binary to excess  1 converter 
which takes less gate counts. Figure below gives the new 
architecture of CSA. 
 

  
Figure 5: 16-Bit Modified Carry Select Adder Schematic  

 
IV. RESULTS 

 
The multiplier is designed using Verilog HDL and 

simulated using Xilinx ISE. The Figure 6 shows the simulation 
with MCSA. 

 

  
Figure 6. Simulated output of Modified Booth Multiplier using MCSA 

  Efficient multiplier in then implemented into digital FIR 
Filter. Simulated result of filer using Radix 8 Encoded Booth 
multiplier for multiplication and Modified architecture of CSA 
to add the partial products is shown in figure 7. 
 .  

  
Figure 7: Simulation result of FIR Filter using Radix 8 Booth Multiplication with Modified CSA 

Delay comparison 
By comparing the time taken for computing the final 

product calculation by various methods, a clear picture is 
obtained that Radix 8 is faster. The number of partial products 
in Radix 8 is less as compared to other multiplier 
methodologies. The timing table displayed below is from the 
timing summary report that will be generated when running the 
simulation. As an example snapshot of timing report of 
efficiency multiplier taking 15.78ns for calculation is shown in 
figure 8. The delay mentioned is the time taken by various 
methods to calculate the final product that is it includes the 
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time taken for generation of partial products and its addition by 
using the adder architecture. 
 

 Figure 8: Timing report of EBM with MCSA 
 

Table 4: Comparative Table of time taken by various methods 
Multiplication methods  Delay (ns)  
Shift and Add  65.33  
Radix 8 with Regular CSA 17.52 
Radix 8 with Modified CSA 15.78 

  
From the table above it is seen that delay of 8 bit MBM 

with RCSA and MBM with MCSA is reduced by 27 % and 24 
% respectively.  
 
The area calculation of regular CSA: 
 From the structure of RCSA, 8-bit, 16-bit adders’ gate count 
is calculated. 
8-bit RCSA: 
Initial carry input Cin, 2-bit RCA   = 1 

Carry input  Cin     = 0, 
2-bit RCA = 1 
4-bit RCA = 1 

Carry input   Cin   = 1, 
2-bit RCA = 1 
4-bit RCA = 1 

The area count of RCA is tabulated below 
 
Table 5. Area count of 8-bit RCSA  

    
  
 
 

 
The total area of the 8-bit regular CSA is 179. The total area 
of the different adder is tabulated in Table 6 
 
Table 6 Regular CSA Area  

 
 
 
 

 Area calculation for MCSA: 
 
The area calculation of modified CSLA is derived from the 
following steps. From the structure of MCSA, 8-bit, 16-bit, 
32-bit and 64-bit area is calculated. 

The Group 1 architecture calculation is, 
 Gate Count = 19 (FA+HA) 
FA = 13 (1×13) 
HA = 6 (1×6) 
The Group 2 architecture calculation is, 
 Gate Count =43 (FA+HA+Mux+BEC) 
FA = 13 (1×13) 
HA = 6 (1×6) 
Mux = 12 (3×4) 
BEC:  AND = 1 

NOT = 1 
XOR = 10 (2×5) 

The Group 3 architecture calculation is, 
Gate Count = 61 (FA+HA+Mux+BEC) 
FA = 26(2×13) 
HA = 6 (1×6) 
Mux = 16 (4×4) 
BEC: AND = 2 
 NOT = 1 
 XOR = 15 (3×5) 
The Group 4 architecture calculation is, 
Gate Count = 84 (FA+HA+Mux+BEC) 
FA = 13 (3×13) 
HA = 6 (1×6) 
Mux = 20 (5×4) 
BEC = 24 
 
Similar Calculations are done for group 5 architecture and 
total number of gate counts is tabulated below for 8 bit and 16 
bit MCSA . 

Table 7. Modified MCSA Area  
Word Size Adder Area (no. Of 

Gates) 
8-bit MCSA 145 
16-bit MCSA 329 

 
Chart shown in figure 9 and 10 gves a clear picture of 
reduction in gate 
counts

 Figure 9.Gate count comparison of all 5 groups of RCSA and MCSA 

Word size & Adder Number of gates 
2-bit RCA 19 
4-bit RCA 45 
2:1 Mux 4 

 

Word Size Adder Area (no. Of 
Gates) 

8-bit RCSA 179 
16-bit RCSA 427 
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 Figure 10. Total Gate counts of RCSA and MCSA  
 

The graph comparison of total number of gates required for 
16-bit regular and modified carry select adders. MCSA has a 
reduced the gate counts by 98 leading to reduction in area by 
77%. 

V.CONCLUSION  
In this paper we are presenting an efficient architecture for 

multiplier. Multiplier is designed such that, delay time taken 
for final result calculation is reduced leading to increase in 
speed. It will also lead to faster performance of processors as 
most of the processors have Multipliers and/or MAC units in 
them. For making the architecture area efficient, we have 
modified the regular Carry select Adder by replacing RCA 
with Cin=1 by Binary to Excess 1 Convertor. The Radix-8 
Modified Booth multiplication technique presented in this 
project will result in the reduction of the number of partial 
products, hence contributing in faster calculation of result. As 
the number of transistor switching will be less, the total power 
consumption will also be reduced leading to efficient 
implementation of multiplier .As a future advancement higher 
order radix can be implemented the proposed architecture has 
been designed and synthesized using Verilog in Xilinx ISE. 
The design is finally implemented using Spartan 6 FPGA. 

. 
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