

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 2, Issue 9, September 2015)

40

Efficient Architecture of Multiplier for Digital
Filters

Smitha N Mallya

Department of Electronics & Telecommunication
FCRIT, Vashi

Navi Mumbai, Maharashtra, India 1smithamallya@yahoo.com

 Sneha Revankar
Department of Electronics & Telecommunication

FCRIT, Vashi
Navi Mumbai, Maharashtra, India

Sneha.revankar@gmail.com

Abstract - this paper presents a new architecture for multiplier
unit. The new high speed and low area architecture of multiplier
unit is then implemented in FIR Filter. The method used in this
paper employs Encoded Booth Algorithm resulting in speedy
operation. Architecture of Regular CSA is modified for Area
optimization. Less area occupation makes the design consume
less power. Multiplication plays a vital role in most of the high
performance systems. By reducing the delay taken for
calculations of results one can speed up the system performance.
The methods include Modified Booth Multiplication along with
carry select adder. Comparative study is done between normal
multiplier-shift/add multiplier, encoded booth multipliers using
RCSA and MCSA for Radix 8. The efficient among three is
applied to filter structure and design is implemented on Spartan
6 FPGA kit. The proposed designs are designed using Verilog
HDL and synthesized, implemented using Xilinx ISE.

Key Terms— Shift/add Multiplier, Encoded Booth’s Multiplier,
RCSA, MCSA, Spartan 6 FPGA.

I. INTRODUCTION
Filters are widely used in various DSP applications. Few

applications, will be such that the filter circuit must be able to
operate at high sample rates, while in other applications, the
filter circuit must act as a low-power circuit that operates at
moderate sample rates. Hence major component that affects a
filter is the multiplier circuitry. It also affects the resultant
power consumption and speed. Thus choosing a multiplier
with more hardware breadth rather than depth would not only
reduce the delay, but also the total power consumption. A lot
of design methods of low power digital filter have been
proposed. They use a modified common sub expression
elimination algorithm to reduce the number of adders used in
the multiplication operation.

Multiplication is a most commonly used operation in many
computing systems. In fact multiplication is nothing but
repetitive addition since, multiplicand adds to itself multiplier
number of times gives the multiplication value between
multiplier and multiplicand. But the facts that this kind of
implementation shall take many hardware resources and make
the circuit operate at utterly low speed. In order to address this
issue so many ideas have been presented so far for the last
three decades. Each one is aimed at a particular improvement
according to the requirement. One may be aimed at high clock
speeds and another may be aimed for low power consumption
or less area occupation [1], [2]. Either way ultimate job is to

come up with an efficient architecture which can address three
constraints of VLSI speed, area, and power. Among these
three, speed is the one
Which requires most important and special attention? On
observing closely, multiplication operation involves two major
steps: one is producing partial products and other is adding
these partial products. Thus, the speed of a multiplier hardly
depends on how fast the partial products are generated and
how fast we can add them together. If the numbers of partial
products to be generated are less then it is indirectly means
that we have achieved the speed in generating partial products.
Booth’s algorithm is meant for achieving speed. To speed up
the addition operation among the partial products, we need
fast adder architectures. Since the multipliers have a
significant impact on the performance of the entire system,
one such high performance algorithms and architectures have
been proposed by Renuka Narasimha, Rajasekhar and Sujana
Rani [3].

The section II give a brief summary of FIR filter theory,
section III presents FIR implementation which discusses the
different multiplication architectures. Section IV discusses on
simulation results. Section V is conclusion drawn between
different multipliers and future work to be carried.

II. DIGITAL FILTER THEORY
Digital filters are main components that are usually used to

modify or alter the attributes of a signal in the time or
frequency domain. The linear time-invariant (LTI) filter is the
most common digital filter. Interaction of an LTI system with
input signal through a process called linear convolution,
denoted by y = f * x where f is the filter’s impulse response, x
is the input signal, and y is the convolved output. The linear
convolution process is formally defined by:

 Y[n] = x[n] * f[n] =

 (1)

LTI digital filters are generally classified as being finite
impulse response (i.e., FIR), or infinite impulse response (i.e.,
IIR). An FIR filter is a filter whose impulse response settles to
zero in finite time. An IIR filters may have an internal
feedback and continue to respond indefinitely. As the name
implies, an FIR filter consists of a finite number of sample

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 2, Issue 9, September 2015)

41

values, reducing the above convolution sum to a finite sum per
output sample instant. An FIR with constant coefficients is an
LTI digital filter. The output of an FIR of order or length L, to
an input time-series x[n], is also given by a finite version of
the convolution sum given in Eq (2), namely:

 (2)

where f[0] 0 through f[L-1] 0 are the filter’s L

coefficients. They also correspond to the FIR’s impulse
response. For LTI systems it is sometimes more convenient to
express in the z-domain with

Y(z) = F(z) X(z) (3)

Where F (z) is the FIR’s transfer function defined in the z-

domain by
 (4)

The Lth-order LTI FIR filter is usually interpreted as shown

in Figure.1. It comprises of large number of a “tapped delay
line,” adders, and multipliers. One of the operands given to
each multiplier is an FIR filter coefficient, often named as a
“tap weight”.

The FIR filter with transposed structure Figure.1 has
registers between the adders and can achieve high throughput
without adding any extra pineline registers.

Figure 1: FIR filter in the transposed structure

The multiplier is one of the essential elements of the digital
signal processing such as filtering, convolution, and inner
products. Most digital signal processing methods use nonlinear
functions such as discrete cosine transform (DCT) or discrete
wavelet transform (DWT). Because they involve repetitive
application of multiplication and addition, the speed of the
multiplication and addition determines the execution speed and
performance of the entire calculation. Because the multiplier
requires the longest delay among the basic operational blocks
in digital system, the critical path is determined by the
multiplier, in general.

 Fast multipliers are an integral part of digital signal
processing systems. Initially multiplication was generally
implemented by sequence of addition and shift operations.
Multiplication can be considered as a series of repeated
additions. The number to be added is the multiplicand, the
number of times that it is added is the multiplier, and the result

is the product. Each step of addition generates a partial product.
In most computers, the operand usually contains the same
number of bits. Final product is usually reserved to be of length
two times than the length of input data bits so as to no
information is lost . This repeated addition method that is
suggested by the arithmetic definition is slow. It is almost
always replaced by an algorithm that makes use of positional
representation. It is possible to decompose multipliers into two
parts. The first part is dedicated to the generation of partial
products, and the second one collects and adds them. The basic
multiplication principle is twofold i.e., evaluation of partial
products and accumulation of the shifted partial products. It is
performed by the successive additions of the columns of the
shifted partial product matrix. The multiplier is successfully
shifted and gates the appropriate bit of the multiplicand. The
delayed, gated instance of the multiplicand must all be in the
same column of the shifted partial product matrix. They are
then added to form the final product. For high-speed
multiplication, there are some of the methods discussed in this
paper.

A. Shift and Add Multiplier
In this section we present a simple Shift and Add structure

for multiplier used in filters [4]. Multiplication is performed
by generating partial products and shifting the multiplicand
left by one bit after every partial product calculation. The
partial product of the current stage is set to the sum of the
previous partial product and the shifted multiplicand of the
current stage or 0, depending on whether the multiplier bit in
the current stage is 1 or 0. Let MD be multiplicand and MR be
he multiplier

Reference Model: Shift-and-Add for 3-bit operands
Stage 1:

Rule a: product = prod+ MD if MR [0] exists else
Rule b: product = product + 0 if MR [0] =0.

Stage 2:
Rule a: product = product + MD shifted left by 1 bit

if MR [1] exits.
Rule b: product = product + 0 if MR [0] =0.

Stage 3:
Rule a: product = product + MD shifted left by 2 bit

if MR [2] exits.

Rule b: product = product + 0 if MR [0] =0.

 The same procedure is followed for n-bit multiplication.
B .Modified Booth Multiplier

In order to achieve high-speed, modified Booth algorithm
has been presented in this section. Booth multiplication is a
process that allows faster computation of results, by recoding
the numbers that are to be multiplied [7]. It depends on radix
we choose for recoding the multiplier bits. Radix 4 booth
encoding leads to reduction in partial products by almost 50%
.The method is, instead of shifting and adding multiplicand for
every column of the multiplier bit and multiplying by 1 or 0,
we group the multiplier bits, and multiply by ±1, ±2, or 0, to

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 2, Issue 9, September 2015)

42

obtain the same results. This algorithm can be used for signed
numbers as well by taking negative number in two's
complement notation.

i. Radix-2 Multiplication

The simple multiplication generator can be used to reduce

the number of partial products by grouping the bits of the
multiplier into pairs, and selecting the partial products from the
set 0, +-M, where M is the multiplicand. Here the multiplier is
grouped into two bits. Each encoded digit performs some
operation on the multiplicand generating the partial product
with the help of the selection Table 1. Each partial product is
shifted one bit position to the left with respect to its neighbors.
These partial products are then added to obtain the final
product.

 Table 1: Partial product selection table for radix 2

Multiplier bits Selection
00 0
01 +M
10 -M
11 0

ii. Radix -4 Multiplication
The Radix-4 Modified Booth’s Algorithm reduces the

number of partial products by about a factor of two. This
selects the partial products from the set of 0, +-M, +-2M, where
M is the multiplicand. The multiplier is appended by a ‘0’ on
LSB; we will call this bit as Z. The multiplier is partitioned into
overlapping groups of 3 bits, and each group is decoded to
select a single partial product as per the selection Table 2. Each
partial product is shifted 2 bit positions with respect to its
neighbors. The number of partial products will be reduced from
16 to 9 for a 16X16 multiplication. In general the there will be
(n+2)/2 partial products, where n is the operand length.

Table 2: Partial product selection table for radix 4

Multiplier bits Selection
000 0
001 +MD
010 +MD
011 +2MD
100 -2MD
101 -MD
110 -MD
111 0

 Figure 2: Recoding of multiplier

Each block is decoded to generate the correct partial

product. The encoding of the multiplier Y, using the modified
booth algorithm, generates the following five signed digits, -2,
-1, 0, +1, +2. Each encoded digit in the multiplier performs a
certain operation on the multiplicand as illustrated in the Table
2.

The modified Booth’s algorithm (radix-4 recoding) starts
by appending a zero to the right of x0 (multiplier LSB).
Triplets, group of three bits are taken beginning at position x –1 and continuing to the MSB with one bit overlapping between
adjacent triplet groups. If the number of bits in the multiplier
(excluding x –1) is odd, the sign (MSB) is extended one
position to ensure that the last triplet contains 3 bits. In every
step we will get a signed digit that will multiply the
multiplicand to generate a partial product entering the Carry
select adder.

Radix -8 Multiplication Radix-8 Booth Multiplication
As a further enhancement we have implemented a next

higher radix multiplier so that partial products are further
reduced to {n+2)/3. It thus further reduces the area and
contributes in reducing power consumption. The multiplier is
partitioned into overlapping groups of 4 bits, and each group is
decoded to select a single partial product as per the selection
Table 3. Each partial product is shifted 3 bit positions with
respect to its neighbors. The number of partial products will be
reduced as compared to Radix-4.

Table 3: Partial product selection table for radix 8

Multiplier bits Selection Multiplier bits Selection
0000 0 1000 -4 MD
M0001 +MD 1001 -3 MD
0010 + MD 1010 -3 MD
0011 +2 MD 1011 -2 MD
0100 +2 MD 1100 -2 MD
0101 +3 MD 1101 - MD
0110 +3 MD 1110 - MD
0111 +4 MD 1111 0

Proposed Architecture for Multiplication

 Figure 3: Architecture for Booth Multiplication
 The multiplier is designed so that it can take two n-bit inputs:

the multiplier (MR) and the multiplicand (MD), and results in

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 2, Issue 9, September 2015)

43

producing the 2n-bit multiplication result of the two as its
output. The architecture of the booth multiplier,
Primarily consists of four major modules as shown in Fig.3.
They are: 2's Complement Generator, Booth Encoder, Partial
Product Generator and Carry Select Adder. The first block
gives the twos complement form of input multiplier data it
takes the multiplicand (MD) as its input and produces -MD as
its output. This is required when recoded multiplier bit
signifies negative multiplication. 2's complement is generated
by inverting all bits of the multiplicand and then adding 1
using adder. The Partial Product Generator uses two control
signals x and z produced by the Booth Encoder and uses these
signals to choose from and extend signs of '0', MD,-
MD,2MD or -2MD for creating partial products.. The final
intermediate results are added using a Carry Select
Adder. Carry select Adder (CSA) adds two numbers with very
lower latency. The carry Select adder will avoid the unwanted
addition and thus minimize the switching power dissipation.
Carry select adder is one of the fastest adders among parallel
adders.CSA is made up of RCA arrays.

 Figure 4: 16-Bit Regular Carry Select Adder Schematic
CSA is faster adder when compared to RCA .The only
parameter to be taken care of now is to reduce the gate counts
so as to reduce the area occupied. New architecture is
proposed where in second row of RCA’s are replaced by
Binary to Excess one converter. The number of gate used in
BEC is less compared to gates in RCA .The structure of Carry
Select Adder using binary to excess 1 converter for RCA with
Cin=1 to optimize the area and power is shown in Figure 3.13.
BEC gets n inputs and generates n outputs for binary values
without carry and n+1 output for binary values with carry.
Large bit sized multipliers requires multiple BEC and each of
them requires the selection input from the carry output of the
preceding BEC. In this project expecting for maximum
possible data and that carry will be generated we are replacing
the RCAs having Cin =1 by BEC. Thus n bit RCA is replaced
by n+1 bit BEC In our proposed method the carry Cin =1
RCA is replaced by the (n+1) bit BEC. The area is optimized
by replacing regular CSA with new structure where in second
array of RCAs are replaced with Binary to excess 1 converter
which takes less gate counts. Figure below gives the new
architecture of CSA.

Figure 5: 16-Bit Modified Carry Select Adder Schematic

IV. RESULTS

The multiplier is designed using Verilog HDL and

simulated using Xilinx ISE. The Figure 6 shows the simulation
with MCSA.

Figure 6. Simulated output of Modified Booth Multiplier using MCSA

 Efficient multiplier in then implemented into digital FIR
Filter. Simulated result of filer using Radix 8 Encoded Booth
multiplier for multiplication and Modified architecture of CSA
to add the partial products is shown in figure 7.
 .

Figure 7: Simulation result of FIR Filter using Radix 8 Booth Multiplication with Modified CSA

Delay comparison
By comparing the time taken for computing the final

product calculation by various methods, a clear picture is
obtained that Radix 8 is faster. The number of partial products
in Radix 8 is less as compared to other multiplier
methodologies. The timing table displayed below is from the
timing summary report that will be generated when running the
simulation. As an example snapshot of timing report of
efficiency multiplier taking 15.78ns for calculation is shown in
figure 8. The delay mentioned is the time taken by various
methods to calculate the final product that is it includes the

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 2, Issue 9, September 2015)

44

time taken for generation of partial products and its addition by
using the adder architecture.

 Figure 8: Timing report of EBM with MCSA

Table 4: Comparative Table of time taken by various methods
Multiplication methods Delay (ns)
Shift and Add 65.33
Radix 8 with Regular CSA 17.52
Radix 8 with Modified CSA 15.78

From the table above it is seen that delay of 8 bit MBM

with RCSA and MBM with MCSA is reduced by 27 % and 24
% respectively.

The area calculation of regular CSA:
 From the structure of RCSA, 8-bit, 16-bit adders’ gate count
is calculated.
8-bit RCSA:
Initial carry input Cin, 2-bit RCA = 1

Carry input Cin = 0,
2-bit RCA = 1
4-bit RCA = 1

Carry input Cin = 1,
2-bit RCA = 1
4-bit RCA = 1

The area count of RCA is tabulated below

Table 5. Area count of 8-bit RCSA

The total area of the 8-bit regular CSA is 179. The total area
of the different adder is tabulated in Table 6

Table 6 Regular CSA Area

 Area calculation for MCSA:

The area calculation of modified CSLA is derived from the
following steps. From the structure of MCSA, 8-bit, 16-bit,
32-bit and 64-bit area is calculated.

The Group 1 architecture calculation is,
 Gate Count = 19 (FA+HA)
FA = 13 (1×13)
HA = 6 (1×6)
The Group 2 architecture calculation is,
 Gate Count =43 (FA+HA+Mux+BEC)
FA = 13 (1×13)
HA = 6 (1×6)
Mux = 12 (3×4)
BEC: AND = 1

NOT = 1
XOR = 10 (2×5)

The Group 3 architecture calculation is,
Gate Count = 61 (FA+HA+Mux+BEC)
FA = 26(2×13)
HA = 6 (1×6)
Mux = 16 (4×4)
BEC: AND = 2
 NOT = 1
 XOR = 15 (3×5)
The Group 4 architecture calculation is,
Gate Count = 84 (FA+HA+Mux+BEC)
FA = 13 (3×13)
HA = 6 (1×6)
Mux = 20 (5×4)
BEC = 24

Similar Calculations are done for group 5 architecture and
total number of gate counts is tabulated below for 8 bit and 16
bit MCSA .

Table 7. Modified MCSA Area
Word Size Adder Area (no. Of

Gates)
8-bit MCSA 145
16-bit MCSA 329

Chart shown in figure 9 and 10 gves a clear picture of
reduction in gate
counts

 Figure 9.Gate count comparison of all 5 groups of RCSA and MCSA

Word size & Adder Number of gates
2-bit RCA 19
4-bit RCA 45
2:1 Mux 4

Word Size Adder Area (no. Of
Gates)

8-bit RCSA 179
16-bit RCSA 427

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 2, Issue 9, September 2015)

45

 Figure 10. Total Gate counts of RCSA and MCSA

The graph comparison of total number of gates required for
16-bit regular and modified carry select adders. MCSA has a
reduced the gate counts by 98 leading to reduction in area by
77%.

V.CONCLUSION
In this paper we are presenting an efficient architecture for

multiplier. Multiplier is designed such that, delay time taken
for final result calculation is reduced leading to increase in
speed. It will also lead to faster performance of processors as
most of the processors have Multipliers and/or MAC units in
them. For making the architecture area efficient, we have
modified the regular Carry select Adder by replacing RCA
with Cin=1 by Binary to Excess 1 Convertor. The Radix-8
Modified Booth multiplication technique presented in this
project will result in the reduction of the number of partial
products, hence contributing in faster calculation of result. As
the number of transistor switching will be less, the total power
consumption will also be reduced leading to efficient
implementation of multiplier .As a future advancement higher
order radix can be implemented the proposed architecture has
been designed and synthesized using Verilog in Xilinx ISE.
The design is finally implemented using Spartan 6 FPGA.

.
REFERENCES

[1] H. S. Krishnaprasad Puttam, P. Sivadurga Rao & N. V. G.
Prasad.”Implementation of Low Power and High Speed Multiplier-Accumulator Using SPST Adder and Verilog “, International Journal of
Modern Engineering Research ,Sept-Oct 2012

[2] Yun-Nan Chang,Janardhan H Sathyanarayana,Keshab K. Parhi,”Design
and implementation of low power digital Serial Multipliers,” University of
Minnesota,Minneapolis

[3] Kousuke TARUMI, Akihiko HYODO, Masanori MUROYAMA and
Hiroto YASUURA, “A design method for a low power digital FIR filter in
digital wireless communication systems”, Graduate School of Information
Science & Electrical Engineering, Kyushu University [4] Rupali Madhukar Narsale, Dhanasri Gawali,”Design and implementation
of low power FIR filter:A review” International Journal of VLSI and
Embedded Systems-IJVES,March-April 2013

[5] A.Renuka Narasimha, K.Rajasekhar,A.Sujana Rani , “Implementation of
low area and power efficient architectures for digital FIR filters”, IJARCSSE ,Volume 2, Issue 8, August 2012.

[6] Shahnam Mirzaei, Anup Hosangadi, Ryan Kastner,”FPGA implementation
of high speed FIR filters using Add and Shift method”, IEEE, 2006 [7] Sarita Chouhan Kota, Yogesh Kumar, “Low Power Designing of FIR
Filters,” IJATER ,May 2012

[8] Sukhmeet Kaur, Suman and Manpreet Singh Manna, “Implementation of Modified Booth Algorithm (Radix 4) and its Comparison with Booth
Algorithm (Radix-2)”, Advance in Electronic and Electric Engineering.
ISSN 2231-1297, Volume 3, Number 6 (2013) [9] J. Umamaheshwari M. Veni Saranya,”Asic implementation of low power
High Radix Booth Encoded Multiplier using Spst”, International Journal of
Communications and Engineering ,March 2012

[10] B.N. Manjunatha Reddy, H. N. Sheshagiri, Dr. Shanthala S.,”Area
Optimization of 8-bit multiplier using gate diffusion input logic,”
International Journal of Advanced Trends in Computer Science and
Engineering,2013

[11] Xilinx, “ISE Design Suite Software Manuals”, (v 13.1) March 1, 2011
www.xilinx.com [12] Xilinx, “Xpower Estimator User Guide”, UG440 (v13.4) January 18, 2012

[13] K. Babulu, G.Parasuram,” FPGA Realization of Radix-4 Booth
Multiplication Algorithm for High Speed Arithmetic Logics”, K. Babulu et
al, / (IJCSIT) International Journal of Computer Science and Information
Technologies, Vol. 2 (5) , 2011

