

International Journal of Ethics in Engineering & Management Education

Website: www.ijeee.in (ISSN: 2348-4748, Volume 2, Issue 8, August 2015)

7

Design of Low Power and High Speed Modified
Carry Select Adder for 16 bit Vedic Multiplier

Yerra Manohar Mr. SK Saidulu, Mrs.A Swetha Prof B Kedarnath

M.Tech Student (VLSI-SD) Associate Professor Associate Professor HOD-ECE
Dept.of.ECE, GNIT Dept.of.ECE, GNIT Dept.of.ECE, GNIT Dept.of.ECE, GNIT

manoharyarra@gmail.com sk.saidulu@gmail.com swethavlsi@yahoo.com hodece.gnit@gniindia.org

Abstract: In this paper the high speed and low power 16×16 Vedic
Multiplier fundamental block is designed by using low power and
high speed modified carry select adder. Modified Carry Select
Adder employs a newly incremented circuit in the Carry Select
Adder (CSA) which is known to be the fastest adder among the
conventional adder structures. Multiplication namely Vedic
multiplication has been introduced which is quite different from
normal multiplication by shift and addition operati ons. Normally
a multiplier is a key block major power dissipation source. This
paper presents a new design methodology and less power efficient
Vedic Multiplier based up on ancient Vedic Mathematic
techniques. This paper presents a technique for N×N
multiplication is implemented and gives very less delay for
calculating area efficient Vedic multiplier based on the crosswise
and vertical algorithm. Comparisons with existing conventional
fast adder architectures have been made to prove its efficiency.
The performance analysis shows that the proposed architecture
achieves three fold advantages in terms of delay-area-power. The
synthesis results of the Vedic multiplier has compared with the
booth, array multiplier by different technologies.

Keywords: CSA, Multiplier, Vedic multiplier, LP-gate, high delay
block.

I. NTRODUCTION

 Multiplication is one of the fundamental block in almost all
the arithmetic logic units. This Vedic multiplication is mainly
used in the fields of the Digital Signal Processing (DSP) and
also in so many applications like Fast Fourier Transform,
convolution, applications[2,3,9]. In most of the DSP
algorithms multiplier is one of the key component and hence a
high speed and area efficient multiplier is needed and
multiplication time is also one of the predominant factor for
DSP algorithms. The ancient mathematical techniques like
Vedic mathematics used to reduce the computational time
such that it can increases speed and also requires less
hardware. There are sixteen sutras and sixteen sutras (sub
formulae) constructed by swahiji. Vedic is a word obtained
from the word “Veda” and its meaning is “store house of all
knowledge”. Vedic mathematics mainly consists of the 16
sutras which it can be related to the different branches of
mathematics like algebra, arithmetic geometry.

II. ANCIENT VEDIC MATHEMATICAL ALGORITHMS

The Vedic mathematics mainly reduces the complex typical
calculations in to simpler by applying sutras as stated above.
These Vedic mathematic techniques are very efficient and take
very less hardware to implement. These sutras are mainly used
for multiplication of two decimal numbers and we extend
these sutras for binary multiplications. Some of the techniques
are discussed below.

A. Urdhva -Tiryagbhyam Sutra (Vertically and Crosswise):
Booth multipliers are generally used for multiplication
purposes. Booth Encoder, Wallace Tree, Binary Adders and
Partial Product Generator are the main components used for
Booth multiplier architecture. Booth multiplier is mainly used
for 2 applications are to increase the speed by reduction of the
partial products and also by the way that the partial products to
be added. In this section we propose a Vedic multiplication
technique called “Urdhva-Tiryakbhyam – Vertically and
crosswise.” Which can be used not only for decimal
multiplication but also used for binary multiplication? This
technique mainly consists of generation of partial products
parallel and then we have to perform the addition operation
simultaneously[3]. This algorithm can be used for 2x2, 4x4,
8x8....N×N bit multiplications. Since the sums and their partial
products are calculated in parallel the Vedic multiplier does
not depends upon the processor clock frequency. Hence there
is no need of increasing the clock frequency and if the clock
frequency increases it will automatically leads to the increase
in the power dissipation. Hence by using this Vedic multiplier
technique we can reduces the power dissipation. The main
advantage of this Vedic multiplier is that it can reduces delay
as well as area when compared with the other multipliers.

B. Example for Decimal Multiplication Using Vedic
Mathematics:
To illustrate this technique, let us consider two decimal
numbers 252 and 846 and the multiplication of two decimal
numbers 252×846 is explained by using the line diagram
shown in below figure1. First multiply the both numbers
present on the two sides of the line and then first digit is stored
as the first digit of the result and remaining digit is stored as
pre carry for the next coming step and the process goes on and
when there is more than one line then calculate the product of
end digits of first line and add the result to the product

International Journal of
Website: www.ijeee.in (ISSN: 2348

obtained from the other line and finally store it as a result and
carry. The obtained carry can be used a carry for the further
steps and finally we will get the required result which is the
final product of two decimal numbers 252x846. Take the
initial carry value as the zero. For clear understanding purpose
we explained the complete algorithm in the below line
diagram such that each bit represents a circle and number of
bits equal to the number of circles present.

Figure 1. Multiplication of two decimal numbers

III. MODIFIED VEDIC MULTIPLIER ARCHITECTURE

The architectures for 2×2, 4×4, 8×8, 16×16. . .N×N bit
modules are discussed in this section. In this section, the
technique used is ‘Urdhva-Tiryakbhyam’ (V
Crosswise) sutra which is a simple technique for
multiplication with lesser number of steps and also in very less
computational time. The main advantage of this Vedic
multiplier is that we can calculate the partial products and
summation to be done concurrently. Hence we are using this
Vedic multiplier in almost all the ALU’s.

A. 2×2 Vedic Multiplier Block
To explain this method let us consider 2 numbers with 2 bits
each and the numbers are A and B where A=a0a1 and B=b0b1
as shown in the below line diagram. First the least significant
bit (LSB) bit of final product (vertical) is obtained by taking
the product of two least significant bit (LSB) bits of A and B
is a0b0. Second step is to take the products in a crosswise
manner such as the least significant bit (LSB) of the first
number A (multiplicand) is multiplied with the next higher bit
of the multiplicand B in a crosswise manner. The output
generated is 1-Carry bit and 1bit used in the result as shown
below. Next step is to take product of 2 most significant bits
(MSB) and for the obtained result previously obtained carry
should be added. The result obtained is used as the fourth bit
of the final result and final carry is the other bit.

 Ethics in Engineering & Management

Website: www.ijeee.in (ISSN: 2348-4748, Volume 2, Issue 8, August

8

obtained from the other line and finally store it as a result and
carry. The obtained carry can be used a carry for the further
steps and finally we will get the required result which is the

decimal numbers 252x846. Take the
initial carry value as the zero. For clear understanding purpose
we explained the complete algorithm in the below line
diagram such that each bit represents a circle and number of

Figure 1. Multiplication of two decimal numbers

III. MODIFIED VEDIC MULTIPLIER ARCHITECTURE

The architectures for 2×2, 4×4, 8×8, 16×16. . .N×N bit
modules are discussed in this section. In this section, the

Tiryakbhyam’ (Vertically and
Crosswise) sutra which is a simple technique for
multiplication with lesser number of steps and also in very less
computational time. The main advantage of this Vedic
multiplier is that we can calculate the partial products and

e done concurrently. Hence we are using this

To explain this method let us consider 2 numbers with 2 bits
each and the numbers are A and B where A=a0a1 and B=b0b1

w line diagram. First the least significant
bit (LSB) bit of final product (vertical) is obtained by taking
the product of two least significant bit (LSB) bits of A and B
is a0b0. Second step is to take the products in a crosswise

significant bit (LSB) of the first
number A (multiplicand) is multiplied with the next higher bit
of the multiplicand B in a crosswise manner. The output

Carry bit and 1bit used in the result as shown
most significant bits

(MSB) and for the obtained result previously obtained carry
should be added. The result obtained is used as the fourth bit
of the final result and final carry is the other bit.

s0 =
(1)
c1s1 = a1
(2)
c2 s2 =
(3)

The obtained final result is given as c2s2s1s0. A 2×2 Vedic
multiplier block is implemented by using two half adders and
four two input and gates as shown in belo

B. 4x4 Vedic Multiplier Block
In this section, now we will discuss about 4x4 bit Vedic
multiplier. For explaining this multiplier let us consider two
four bit numbers are A and B such that the individual bits can
be represented as the A3A2A1A0 and B3B2B1B0. The
procedure for multiplication can be explained in terms of line
diagram shown in below figure. The final output can be
obtained as the C6S6S5S4S3S2S1S0. The partial products are
calculated in parallel and hence delay obtained is decr
enormously for the increase in the number of bits. The Least
Significant Bit (LSB) S0 is obtained easily by multiplying the
LSBs of the multiplier and the multiplicand. Here the
multiplication is followed according to the steps shown in the
line diagram in figure 3. After performing all the steps the
result (Sn) and Carry(Cn) is obtained and in the same way at
each step the previous stage carry is forwarded to the next
stage and the process goes on.

Figure 2. Block Diagram of 4x4 bit Vedic Multipli

C. 8x8 Vedic Multiplier Block
In this section, now we will discuss about 4x4 bit Vedic
multiplier. For explaining this multiplier let us consider two 8
bit numbers are A and B such that the individual bits can be

Ethics in Engineering & Management Education
August 2015)

0 = a0b0

1b0 + a0b1

c1 + a1b1

The obtained final result is given as c2s2s1s0. A 2×2 Vedic
multiplier block is implemented by using two half adders and
four two input and gates as shown in below Figure 2.

In this section, now we will discuss about 4x4 bit Vedic
multiplier. For explaining this multiplier let us consider two
four bit numbers are A and B such that the individual bits can

2A1A0 and B3B2B1B0. The
procedure for multiplication can be explained in terms of line
diagram shown in below figure. The final output can be
obtained as the C6S6S5S4S3S2S1S0. The partial products are
calculated in parallel and hence delay obtained is decreased
enormously for the increase in the number of bits. The Least
Significant Bit (LSB) S0 is obtained easily by multiplying the
LSBs of the multiplier and the multiplicand. Here the
multiplication is followed according to the steps shown in the

ram in figure 3. After performing all the steps the
result (Sn) and Carry(Cn) is obtained and in the same way at
each step the previous stage carry is forwarded to the next

. Block Diagram of 4x4 bit Vedic Multiplier

In this section, now we will discuss about 4x4 bit Vedic
multiplier. For explaining this multiplier let us consider two 8
bit numbers are A and B such that the individual bits can be

International Journal of Ethics in Engineering & Management Education

Website: www.ijeee.in (ISSN: 2348-4748, Volume 2, Issue 8, August 2015)

9

represented as the A7A6A5A4A3A2A1A0 and
B7B6B5B4B3B2B1B0. The procedure for multiplication can
be explained in terms of line diagram shown in below figure 4.
The final output can be obtained as the
16S15S14S13S12S11S10S9S8S7S6S5S4S3S2S1S0. The
partial products are calculated in parallel and hence delay
obtained is decreased enormously for the increase in the
number of bits. The Least Significant Bit (LSB) S0 is obtained
easily by multiplying the LSBs of the multiplier and the
multiplicand. Here the multiplication is followed according to
the steps shown in the line diagram in figure 4. After
performing all the steps the result (Sn) and Carry (Cn) is
obtained and in the same way at each step the previous stage
carry is forwarded to the next stage and the process goes on.

Figure 3. Block Diagram of 8x8 bit Vedic Multiplier

For clear understanding, observe the block diagrams for 8x8
as shown below and within the block diagram 8x8 totally there
are four 4x4 Vedic multiplier modules, and three modified
carry select adders which are of 8 bit size are used. The 8 bit
modified carry select adders are used for addition of
two 8 bits and likewise totally four are use at intermediate
stages of multiplier. The carry generated from the first
modified carry select adder is passed on to the next modified
carry select adder and there are four zero inputs for second
modified carry select adders. The arrangement of the modified
carry select adders are shown in below block diagram which
can reduces the computational time such that the delay can be
decrease.
D. 16x16 Vedic Multiplier Block
In this section, now we will discuss about 4x4 bit Vedic
multiplier[10]. For explaining this multiplier let us consider
two 8 bit numbers are A and B such that the individual bits
can be represented as the A [15:0] and B [15:0]. The
procedure for multiplication can be explained in terms of line

diagram shown in below figure 5. The final output can be
obtained as the C16S[31:0]. The partial products are
calculated in parallel and hence delay obtained is decreased
enormously for the increase in the number of bits. The Least
Significant Bit (LSB) S0 is obtained easily by multiplying the
LSBs of the multiplier and the multiplicand. Here the
multiplication is followed according to the steps shown in the
line diagram in figure. After performing all the steps the result
(Sn) and carry (Cn) is obtained and in the same way at each
step the previous stage carry is forwarded to the next stage and
the process goes on. 16 Bit Modified Carry Select Adder: The
Block diagram of the proposed Architecture consists of
following parts
1) Ripple carry adder
2) Basic Unit (Binary to Excees-1 Converter)
3) Multiplexer

1) Ripple Carry Adder: Ripple carry adder is designed using
multiple full adders to add 8-bit numbers. Each full adder
inputs a Cin, which is the Cout of the previous adder. The
adder is called a ripple-carry adder, since each carry bit
"ripples" to the next full adder. The layout of a ripple-carry
adder is simple, which allows for fast design time; however,
the ripple-carry adder is relatively slow, since each full adder
must wait for the carry bit to be calculated from the previous
full adder. Ripple adder is a combination of 4full adders in
which output carry is used as input carry to the next full adder.
RCA uses large number of AND, OR, NOT gates. It has the
advantages of high speed and less delay.

2) Binary to Excess-1 Code Converter: In Binary to Excess
one converter we are using XOR, AND, NOT gates by
implementing these gates we are reducing the area, time delay,
power consumption because of reduction in number of gates
when compared to normal ripple carry adder. The 4 Bit Binary
to Excess-1 Code Converter is shown in figure 5. The
additionis achieved. Using BEC together with a multiplexer
(mux) one input is the output of ripple carry adder gets as it
input and another input of the mux is the BEC output. This
gives the two partial results in parallel and the Mux are used to
select either BEC output or the direct inputs according to the
given control signal.
The Boolean Expressions of 4-bit BEC given below
X 0 =~ B0
X1 = B0 ^ B1
X 2 = B2 ^ (B0 & B1)
X 3 = B3 ^ (B0 &B1 &B2)
3) Multiplexer: Multiplexer is also called Universal element or
Data Selector. A Multiplexer has of 2^n inputs have n select
lines Basically MUX operation based on the select lines.
Depending upon the select line the input is Send to the output.
Multiplexers used to increase the amount of data that can be
sent over the network. In this experiment, for each RCA we
are using the five 2:1 Multiplexers and the outputs can be
obtained as the five values and among them one can be used
as the carry for the next block and remaining can be used for

International Journal of Ethics in Engineering & Management Education

Website: www.ijeee.in (ISSN: 2348-4748, Volume 2, Issue 8, August 2015)

10

the representation of the output. The 16 Bit Modified Carry
Select Adder is shown in below figure 6. The values of 4 bit
can be taken and remaining can be obtained from the next
blocks. Like that we will obtain totally sixteen outputs and
those are outputs of the sixteen bit addition. The five
Multiplexers can give the outputs as the ripple carry adder or
the binary to excess one converter output. Based up on the
control signal we are selecting the output.
For clear understanding, observe the block diagrams for 16x16

as shown below and within the block diagram 16x16 totally
there are four 8x8 Vedic multiplier modules, and three

modified carry select adders which are of 16 bit size are used.
The 16 bit modified carry select adders are used for addition

of two 16 bits and likewise totally four are use at intermediate
stages of multiplier. The carry generated from the first

modified carry select adder is passed on to the next modified
carry select adder and there are eight zero inputs for second

modified carry select adders. The arrangement of the modified
carry select adders is shown in below block diagram which an

reduces the computational time such that the delay can be decrease.

Figure 4. 4 Bit Binary to Excess-1 Code Converter

Figure.5 .16 Bit Modified Carry Select Adder

Figure 6. Block Diagram of 16x16 bit Vedic Multiplier

IV. RESULTS AND COMPARISON

In 2×2, 4×4, 8×8, 16×16 multiplication operations were
designed using Verilog HDL and simulation is performed in
Modelsim, NCLaunch. RTL compilation is performed in RC
and physical design is carried out using Encounter RTL
Compiler under Cadence environment. The comparison table
for power, delay area is given in the below table. The
comparison results of Vedic multiplier with the booth
multiplier is given within the below table.

Figure 7. 4×4 Bit Vedic Multiplier

International Journal of
Website: www.ijeee.in (ISSN: 2348

Figure 8. 8×8 Bit Vedic Multiplier

Figure 9. 8x8 Bit Booth Multiplier

Figure 10. 16×16 Bit Vedic Multiplier

Figure 11. Technology Schematic for 8×8 Vedic Multiplier

 Ethics in Engineering & Management

Website: www.ijeee.in (ISSN: 2348-4748, Volume 2, Issue 8, August

11

. 8×8 Bit Vedic Multiplier

. 8x8 Bit Booth Multiplier

. 16×16 Bit Vedic Multiplier

. Technology Schematic for 8×8 Vedic Multiplier

Figure.12. Structure of

A. Logic Expressions of the SCG Unit of the Conventional
CSLA
As shown in Fig. 1(a), the SCG unit of the conventional
[3] is composed of two n-bit RCAs, where n is the adder bit
width. The logic operation of the n
four stages: 1) half-sum generation (HSG); 2) half
generation (HCG); 3) full-sum generation (FSG); and 4) full
carry generation (FCG). Suppose two n
in the conventional CSLA, then RCA
n-bit sum (s0 and s1) and output
responding to input-carry (cin =0and cin =1), respectively.
Logic expressions of RCA-1 an
the n-bit CSLA are given as

As shown in (1a)–(1c) and (2a)
{s0 0(i),c0 0(i)} is identical to that of {s1 0(i),c1 0(i)}. These
redundant logic operations can be removed to have an opti
mized design for RCA-2, in which the HSG and HCG of
RCA-1 is shared to construct RCA
[5] have used an add-one circuit instead of RCA

Ethics in Engineering & Management Education
August 2015)

f the BEC-based CSLA

A. Logic Expressions of the SCG Unit of the Conventional

As shown in Fig. 1(a), the SCG unit of the conventional CSLA
bit RCAs, where n is the adder bit-

width. The logic operation of the n-bit RCA is performed in
sum generation (HSG); 2) half-carry

sum generation (FSG); and 4) full-
tion (FCG). Suppose two n-bit operands are added

in the conventional CSLA, then RCA-1 and RCA-2 generate
bit sum (s0 and s1) and output-carry (c0out and c1out) cor-

carry (cin =0and cin =1), respectively.
1 and RCA-2 of the SCG unit of

(1c) and (2a)–(2c), the logic expression of

{s0 0(i),c0 0(i)} is identical to that of {s1 0(i),c1 0(i)}. These
redundant logic operations can be removed to have an opti-

2, in which the HSG and HCG of
1 is shared to construct RCA-2. Based on this, [4] and

one circuit instead of RCA-2 in the

International Journal of
Website: www.ijeee.in (ISSN: 2348

CSLA, in which a BEC circuit is used in [6] for the same
purpose. Since the BEC-based CSLA offers th
delay–power efficiency among the existing CSLAs, we
discuss here the logic expressions of the SCG unit of the BEC
based CSLA as well.
B. Logic Expression of the SCG Unit of the BEC
CSLA As shown in Fig. 2, the RCA calculates n
and c0out corresponding to cin =0. The BEC unit receives s0 1
and c0out from the RCA and generates (n + 1)
code. The most significant bit (MSB) of BEC represents c1out,
in which n least significant bits (LSBs) represent s1 1. The
logic expressions of the RCA are the same as those given in
(1a)–(1c). The logic expressions of the BEC unit of the n
BEC-based CSLA are given as

We can find from (1a)–(1c) and (3a)–(3d) that, in the case of
the BEC-based CSLA, c1 1 depends on s0 1, which otherwise
has no dependence on s0 1 in the case of the conventional
CSLA. The BEC method therefore increases data dependence
in the CSLA. We have considered logic expressions of the
conven- tional CSLA and made a further study on the data
dependence to find an optimized logic expression for the
CSLA. It is interesting to note from (1a)–(1c) and (2a)
that logic expressions of s0 1 and s1 1 are identical
terms c0 1 and c1 1 since (s0 0 = s1 0 = s0). In addition, we
find that c0 1 and c1 1 depend on {s0,c0,cin}, where c0 = c0 0
= c1 0. Since c0 1 and c1 1 have no dependence on s0 1 and s1
1, the logic operation of c0 1 and c1 1 can be scheduled be
s0 1 and s1 1, and the select unit can select one from the set
(s0 1,s1 1) for the final-sum of the CSLA. We
significant amount of logic resource is spent for calculating{s0
1,s1 1}, and it is not an efficient approach to reject one sum
word after the calculation. Instead, one can select the required
carry word from the anticipated carry words {c0 and c1} to
calculate the final-sum. The selected carry word is added with
the half-sum (s0) to generate the final-sum (s). Using this
method, one can have three design advantages:
 1) Calculation of s0 1 is avoided in the SCG unit;
2) the n-bit select unit is required instead of the (n + 1)bit; and
3) small output-carry delay. All these features result in an
area–delay and energy-efficient design for th
removed all the redundant logic operations of (1a)
(2a)–(2c) and rearranged logic expressions of (1a)
(2a)–(2c) based on their dependence. The proposed logic
formulation for the CSLA is given as

 Ethics in Engineering & Management

Website: www.ijeee.in (ISSN: 2348-4748, Volume 2, Issue 8, August

12

CSLA, in which a BEC circuit is used in [6] for the same
based CSLA offers the best area–

ficiency among the existing CSLAs, we
discuss here the logic expressions of the SCG unit of the BEC-

B. Logic Expression of the SCG Unit of the BEC-Based
CSLA As shown in Fig. 2, the RCA calculates n-bit sum s0 1
and c0out corresponding to cin =0. The BEC unit receives s0 1
and c0out from the RCA and generates (n + 1)-bit excess-1

t bit (MSB) of BEC represents c1out,
ficant bits (LSBs) represent s1 1. The

logic expressions of the RCA are the same as those given in
(1c). The logic expressions of the BEC unit of the n-bit

(3d) that, in the case of

based CSLA, c1 1 depends on s0 1, which otherwise
has no dependence on s0 1 in the case of the conventional
CSLA. The BEC method therefore increases data dependence

ed logic expressions of the
tional CSLA and made a further study on the data

find an optimized logic expression for the
(1c) and (2a)–(2c)

that logic expressions of s0 1 and s1 1 are identical except the
terms c0 1 and c1 1 since (s0 0 = s1 0 = s0). In addition, we
nd that c0 1 and c1 1 depend on {s0,c0,cin}, where c0 = c0 0

= c1 0. Since c0 1 and c1 1 have no dependence on s0 1 and s1
1, the logic operation of c0 1 and c1 1 can be scheduled before
s0 1 and s1 1, and the select unit can select one from the set

sum of the CSLA. We find that a
ficant amount of logic resource is spent for calculating{s0

ficient approach to reject one sum-
fter the calculation. Instead, one can select the required

carry word from the anticipated carry words {c0 and c1} to
sum. The selected carry word is added with

sum (s). Using this
ave three design advantages:

1) Calculation of s0 1 is avoided in the SCG unit;
bit select unit is required instead of the (n + 1)bit; and

carry delay. All these features result in an
ficient design for the CSLA. We have

removed all the redundant logic operations of (1a)–(1c) and
(2c) and rearranged logic expressions of (1a)–(1c) and
(2c) based on their dependence. The proposed logic

V. PROPOSED ADDER DES

The proposed CSLA is based on the logic formulation given in
(4a)–(4g), and its structure is shown in Fig. 3(a). It consists of
one HSG unit, one FSG unit, one CG unit, and one CS unit.
The CG unit is composed of two CGs (CG0 and CG1)
corresponding to input-carry ‘0’ and ‘1’. The HSG receives
two n-bit operands (A and B) and generate half
and half-carry word c0 of width n bits each. Both CG0 and
CG1 receive s0 and c0 from the HSG unit and generate two n
bit full-carry words c0 1 and c1 1 cor
‘0’ and ‘1’, respectively. The logic diagram of the HSG unit is
shown in Fig. 3(b). The logic circuits of CG0 and CG1 are
optimized to take advantage of the
optimized designs of CG0 and CG1 are shown in
(d), respectively. The CS unit selects one
from the two carry words available at its input line using the
control signal cin. It selects c0 1 when cin =0; otherwise, it
selects c1 1. The CS unit can be implemented using an n
to-l MUX. However, we find from the truth table of the CS
unit that carry words c0 1 and c1 1 follow a speci
pattern. If c0 1(i) = ‘1’, then c1 1(i)=1 , irrespective of s0(i)
and c0(i), for0 ≤ i ≤ n−1. This feature is used for logic
optimization of the CS unit. The optimized design of the CS
unit is shown in Fig. 3(e), which is composed of n AND
gates. The final carry word c is obtained from the CS unit. The
MSB of c is sent to output as cout, and (n
XORed with (n−1) MSBs of half
in Fig. 3(f)] to obtain (n−1) MSBs of final
ofs0 is XORed with cin to obtain the LSB of s.
Final Results
RTL Top Level Output File Name : vedic_16x16.ngr
Top Level Output File Name : vedic_16x16
Output Format : NGC
Optimization Goal : Speed
Keep Hierarchy : NO
Design Statistics

IOs : 64

Cell Usage :
BELS : 766
LUT2 : 41
LUT3 : 225
LUT4 : 469
MUXF5 : 31

Ethics in Engineering & Management Education
August 2015)

PROPOSED ADDER DESIGN

The proposed CSLA is based on the logic formulation given in
(4g), and its structure is shown in Fig. 3(a). It consists of

one HSG unit, one FSG unit, one CG unit, and one CS unit.
The CG unit is composed of two CGs (CG0 and CG1)

carry ‘0’ and ‘1’. The HSG receives
bit operands (A and B) and generate half-sum word s0

carry word c0 of width n bits each. Both CG0 and
CG1 receive s0 and c0 from the HSG unit and generate two n-

carry words c0 1 and c1 1 corresponding to input-carry
‘0’ and ‘1’, respectively. The logic diagram of the HSG unit is
shown in Fig. 3(b). The logic circuits of CG0 and CG1 are
optimized to take advantage of the fixed input-carry bits. The
optimized designs of CG0 and CG1 are shown in Fig. 3(c) and
(d), respectively. The CS unit selects one final carry word
from the two carry words available at its input line using the
control signal cin. It selects c0 1 when cin =0; otherwise, it
selects c1 1. The CS unit can be implemented using an n-bit 2-

find from the truth table of the CS
unit that carry words c0 1 and c1 1 follow a specific bit
pattern. If c0 1(i) = ‘1’, then c1 1(i)=1 , irrespective of s0(i)

−1. This feature is used for logic
of the CS unit. The optimized design of the CS

unit is shown in Fig. 3(e), which is composed of n AND–OR
final carry word c is obtained from the CS unit. The

MSB of c is sent to output as cout, and (n−1) LSBs are
−1) MSBs of half-sum (s0) in the FSG [shown

−1) MSBs of final-sum (s). The LSB
ofs0 is XORed with cin to obtain the LSB of s.

RTL Top Level Output File Name : vedic_16x16.ngr
Top Level Output File Name : vedic_16x16

rmat : NGC
Optimization Goal : Speed
Keep Hierarchy : NO

BELS : 766

LUT3 : 225
LUT4 : 469
MUXF5 : 31

International Journal of
Website: www.ijeee.in (ISSN: 2348

IO Buffers : 64
IBUF : 32
OBUF : 32

Selected Device : 3s500efg320-4
 Number of Slices: 417 out of 4656 8%

 Number of 4 input LUTs: 735 out of 9312 7%

 Number of IOs: 64
 Number of bonded IOBs: 64 out of 232 27%
.

Simulated output:

 Ethics in Engineering & Management

Website: www.ijeee.in (ISSN: 2348-4748, Volume 2, Issue 8, August

13

Number of Slices: 417 out of 4656 8%

Number of 4 input LUTs: 735 out of 9312 7%

out of 232 27%

VI . CONCLUSION

The proposed Vedic multiplier gives less power consumption
when compared to other multiplier techniques because the
number of additions gets reduced by applying Urdhva
Tiryakbhyam which is a s
multiplication. This multiplier has very less delay because of
addition new module of modified carry select adder. This
technique can be used well in DSP applications, as a squarer
for the given number and cube also. Reducing the dela
very much advantage because it can increases speed and this
Vedic multiplier is very useful for low power and high speed
applications.

REFERENCES

[1]. Aniruddha Kanhe, Shishir Kumar Das and Ankit Kumar Singh,

“Design and Implementation of Low Power M
Multiplication Technique”, (IJCSC) International Journalof Computer
Science and Communication Vol. 3, No. 1, January
131- 132

[2]. H. Thapliyal and H.R Arbania. “A Time
Multiplier and Square Architec
Mathematics”, Proceedings of the 2004, International Conference on
VLSI (VLSI’04), Las Vegas, Nevada, June 2004, pp. 434

[3]. Himanshu Thapliyal and M.B.Srinivas, “VLSI Implementation of RSA
Encryption System Using Ancient Indian Vedic athematics”, Center
for VLSI and Embedded System Technologies, International Institute
of Information Technology Hyderabad

[4]. S. Hong, S. Kim, M.C. Papaefthymiou, and W.E.Stark, .Low power
parallel multiplier design for DSP applications through coefficient
optimization, in Proc. of Twelfth Annual IEEE Int. ASIC/SOConf. Sep.
1999, pp. 286-290.

[5]. R. Pushpangadan, V. Sukumaran, R.Innocent, D. Sasikumar, and V.
Sundar, “High Speed Vedic Multiplier for Digita
IETE Journal of Research, vol.55, pp.282

[6]. Devika, K. Sethi and R.Panda, “Vedic Mathematics Based Multiply
Accumulate Unit,” 2011 International Conference on Computational
Intelligence and Communication Systems, CICN 201
Nov. 2011.

[7]. Prabha S., Kasliwal, B.P. Patil and D.K. Gautam, “Performance
Evaluation of Squaring Operation by Vedic Mathematics”, IETE
Journal of Research, vol.57, Issue 1, Jan

[8]. P.D. Chidgupkar, and M.T. Karad, “The Implement
Algorithms in Digital Signal Processing,” Global Journal of Engng.
Educ., vol.8 , pp.153-158, 2004.

[9]. H.D. Tiwari, G. Gankhuyag, C.M. Kim, and Y.B. Cho, “Multiplier
Design Based on Ancient Indian Vedic Mathematics”, Proc. Int SoC
Design Conf., pp.65-68. 2008.

[10]. Umesh Akare, T.V. More and R.S. Lonkar, “Performance Evaluation
and Synthesis of Vedic Multiplier”, National Conference on Innovative
Paradigms in Engineering & Technology (NCIPET
published by International Journal of Computer
Applications (IJCA), 2012.

Ethics in Engineering & Management Education
August 2015)

. CONCLUSION

The proposed Vedic multiplier gives less power consumption
when compared to other multiplier techniques because the
number of additions gets reduced by applying Urdhva-
Tiryakbhyam which is a short approach form of
multiplication. This multiplier has very less delay because of
addition new module of modified carry select adder. This
technique can be used well in DSP applications, as a squarer
for the given number and cube also. Reducing the delay is
very much advantage because it can increases speed and this
Vedic multiplier is very useful for low power and high speed

REFERENCES

Aniruddha Kanhe, Shishir Kumar Das and Ankit Kumar Singh,
“Design and Implementation of Low Power Multiplier Using Vedic
Multiplication Technique”, (IJCSC) International Journalof Computer
Science and Communication Vol. 3, No. 1, January-June 2012, pp.

H. Thapliyal and H.R Arbania. “A Time-Area-Power Efficient
Multiplier and Square Architecture Based On Ancient Indian Vedic
Mathematics”, Proceedings of the 2004, International Conference on
VLSI (VLSI’04), Las Vegas, Nevada, June 2004, pp. 434-9.
Himanshu Thapliyal and M.B.Srinivas, “VLSI Implementation of RSA

System Using Ancient Indian Vedic athematics”, Center
for VLSI and Embedded System Technologies, International Institute
of Information Technology Hyderabad-500019, India.
S. Hong, S. Kim, M.C. Papaefthymiou, and W.E.Stark, .Low power

lier design for DSP applications through coefficient
optimization, in Proc. of Twelfth Annual IEEE Int. ASIC/SOConf. Sep.

R. Pushpangadan, V. Sukumaran, R.Innocent, D. Sasikumar, and V.
Sundar, “High Speed Vedic Multiplier for Digital Signal Processors,”
IETE Journal of Research, vol.55, pp.282- 286, 2009.
Devika, K. Sethi and R.Panda, “Vedic Mathematics Based Multiply
Accumulate Unit,” 2011 International Conference on Computational
Intelligence and Communication Systems, CICN 2011, pp.754-757,

Prabha S., Kasliwal, B.P. Patil and D.K. Gautam, “Performance
Evaluation of Squaring Operation by Vedic Mathematics”, IETE
Journal of Research, vol.57, Issue 1, Jan-Feb 2011.
P.D. Chidgupkar, and M.T. Karad, “The Implementation of Vedic
Algorithms in Digital Signal Processing,” Global Journal of Engng.

158, 2004.
H.D. Tiwari, G. Gankhuyag, C.M. Kim, and Y.B. Cho, “Multiplier
Design Based on Ancient Indian Vedic Mathematics”, Proc. Int SoC

Umesh Akare, T.V. More and R.S. Lonkar, “Performance Evaluation
and Synthesis of Vedic Multiplier”, National Conference on Innovative
Paradigms in Engineering & Technology (NCIPET-2012), proceedings

nal of Computer

