

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1, Issue 12, December 2014)

55

Professional Fuzzy Type-Ahead Rummage
Around in XML (Type-Ahead Search Techniques

in Large Data Sets)

Mr. S. Y. Jadhav
Student,, PG Scholar,

DGOI, COE, Bhigwan, Pune,
MS, India

sjsandeepjadhav@gmail,com

Mr. T. A. Dhaigude
Assistant Professor,

DGOI, COE, Bhigwan, Pune, MS,
India

tanajidhaigudel@gmail.com

Dr. D. S. Jadhav
Director,

Ideal Institute of Management (IIMK),
Kolhapur, MS, India

dattatraya.jadhav30@gmail.com

Abstract – It is a research venture on the new information-access
standard called type-ahead search, in which systems discover
responds to a keyword query on-the-fly as users type in the
uncertainty. In this paper we learn how to support fuzzy type-
ahead search in XML. Underneath fuzzy search is important
when users have limited knowledge about the exact
representation of the entities they are looking for, such as people
records in an online directory. We have developed and deployed
several such systems, some of which have been used by many
people on a daily basis. The systems received overwhelmingly
positive feedbacks from users due to their friendly interfaces with
the fuzzy-search feature. We describe the design and
implementation of the systems, and demonstrate several such
systems. We show that our efficient techniques can indeed allow
this search paradigm to scale on large amounts of data.

Index Terms - type-ahead, large data set, server side, online
directory, search technique.

I. INTRODUCTION

Keyword search is important in information systems.
When using most Web search systems, a user types a complete
query and waits for results from the server. In the case where
users have limited knowledge about the data or do not know
the exact keywords of the entities they are looking for, often
they feel “left in the dark” when issuing queries, and have to
use a try-and-see approach for finding information. Many
systems are introducing various features to solve this problem.
One of the commonly used methods is autocomplete, which
predicts a word or phrase that the user may type in based on
the partial string the user has typed in. As an example, almost
all the major search engines nowadays automatically suggest
possible keyword queries as a user types in partial keywords.

One limitation of traditional autocomplete is that the

system treats a query with multiple keywords as a single
string, thus it does not do a full-text search on the data. For
instance, consider the search box on Apple.com, which allows
autocomplete search on Apple products. Although a keyword
query “itunes” can find a record “itunes wi-fi music store,” a
query “itunes music” cannot find this record , simply because
this query string as a whole does not appear in the record.

Beyond treating a query as a single prefix: To address this
problem, recently a new type-ahead search paradigm has
emerged. Such a system treats the query as a set of keywords,
and finds answers with these keywords. It does a full-text
search on the underlying data “on the fly” as the user types in
query keywords letter by letter. In this way, the user can get
instant feedback after typing a partial query, thus obtain more
knowledge about the underlying data, which helps the user
formulate queries. Bast et al. [1], [2], [3] described several
techniques to do this type of search. An example is the
Complete Search system on DBLP1, which can find
publications that match multiple keywords in a query
interactively.

To study how to support efficient type-ahead search on
large amounts of data, we started a project called “TASTIER”,
which stands for “type-ahead search techniques in large data
sets”2. In this paper we focus on how to support fuzzy type-
ahead search in XML [4]. With our techniques, a type-ahead
system can find answers with keywords similar to the
keywords in a query. It is based on the following motivation.
Often users can make mistakes when they type in queries,
especially when they have limited knowledge about the data.
For instance, a user looking for the publications by Christos
Faloutsos might not know the exact spelling of the author
name (Figure 1). Our techniques are also useful when there are
errors and inconsistencies even in the data itself.

Query performance is a key issue in designing such a fuzzy

type-ahead search system, since there could be more queries
submitted to the system than a traditional system, and each
query should be answered within milliseconds. In this paper
we describe several such systems developed using our
techniques. We describe their design and implementation, and
use performance numbers to show that our techniques can
indeed make this search paradigm scale on large amounts of
data. Compared to our earlier publications, here we mainly
focus on the architecture and demonstrations of these systems.
A possible concern about these systems is their
“disruptiveness,” i.e., each keystroke from the user could
invoke a query on the server. We address this concern using
the following facts. (1) “Search-as-you-type” interfaces have
been widely adopted in many search engines and Web

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1, Issue 12, December 2014)

56

services. (2) In the database community, the recently deployed
CompleteSearch DBLP system with this feature has been well
received. (3) We have deployed several systems with similar
features, and received very positive feedbacks from users due
to the friendly interfaces and high efficiency. (4) If needed, we
do not need to submit a query to the server for each keystroke.
In each of our systems, the client sends a single query possibly
after multiple letters are typed in if these letters were typed in
when the server was still processing the previous query. We
can easily add a delay on the client side after a keystroke
(using JavaScript) for users who type in a query very fast. This
feature is especially useful when the user initially types in a
query quickly, and pauses to digest the information from the
server. A big advantage of this type-ahead interface is to allow
users to explore the data when formulating a query. Chaudhuri
et al. [5] studied how to find similar strings interactively as
users type in a query string, using an approach similar to that
in [4].

II. SYSTEM ARCHITECTURE AND
IMPLEMENTATION

Figure 1 illustrates the client-server architecture of a

system using our XML techniques. We assume the underlying
data is a set of records residing on a server. Our method can be
extended to support type-ahead search on documents, XML
data [6], and relational databases [7]. The client is a Web
browser. A user uses the Web browser to send requests to the
server over the Internet and see the results from the server.
Each keystroke of the user could invoke a query, which
includes the current string the user has typed in. The browser
sends the query to the server. The server tokenizes the query
string, computes and returns to the user the best answers
ranked by their relevancy to the query. Figure 1 gives two
screenshots of fuzzy type-ahead search on a DBLP dataset and
a MEDLINE dataset in the medical domain. For each query
sent to the server, we treat the last keyword as a partial
keyword the user is completing, and other earlier keywords as
complete keywords.3 For each complete keyword, we identify
the keywords in the data that are similar to the keyword. For
the partial keyword, we identify its similar keywords as those
in the data with a prefix similar to the partial keyword.

We use edit distance to quantify the similarity between two

words wi and wj , denoted as ed(wi, wj). The edit distance
between two words is the minimum number of edit operations
(i.e., insertion, deletion, and substitution) of single characters
needed to transform the first one to the second. For example,
ed(feloutose, faloutsos) = 3. We say two keywords are similar
if their edit distance is within a given threshold δ. This
threshold could be proportional to the length of a query
keyword to allow more errors for longer keywords.

Figure1:. Fuzzy type-ahead search architecture

We compute the relevant records that contain a similar

keyword for every keyword, and return the most relevant
records ranked by their relevancy to the query.

There are several components on the server side. The
Indexer component indexes the underlying data as a trie
structure with inverted lists of keywords in the leaf nodes. We
build a Fast CGI module on the Web server to store the data
and indices. Different from a CGI module, the Fast CGI server
module is loaded once when the Web server starts, and
continually handles queries without spawning more instances.
Therefore the server loads the data and indices from the disk
once, and then searches on the data in memory without
accessing the disk. The Fast Cgi Server waits for queries from
the client, and caches query results. The Server Cache
component checks whether the query can be answered using
the cached results. If not, the server incrementally answers the
query by using the cached information. For each query
keyword, the Fuzzy Prefix Finder incrementally computes its
similar keywords.

The Multi-keyword Intersection module computes the
relevant answers that contain at least one similar keyword for
every input keyword. The Ranker module ranks the answers to
identify the top-k best answers for a constant k.

A. Server Design

We present the design of the server modules. We chose
C++ to build the server module due to its high performance.
Indexer: It is an offline process that reads data from specified
sources, tokenizes the data, and creates the following
structures: (1) a radix trie structure with inverted lists on the
corresponding leaf nodes; (2) a forward index that stores the
sorted list of keyword IDs for each record; (3) the data itself.
Each word w in the data corresponds to a unique path from the
root of the trie to a leaf node. Each node on the path has a
label of a character in w. The nodes with the same parent are
sorted by the node label in their alphabetical order. For each
leaf node, we store an inverted list of IDs of records that
contain the corresponding word. To improve performance,

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1, Issue 12, December 2014)

57

optionally we can also maintain a forward index, which keeps
the sorted keyword IDs for each record.

Incremental Fuzzy Prefix Finder: It is part of the FastCGI
module. In the case of exact search, there exists only one trie
node corresponding to a partial keyword. However, to support
fuzzy search, we need to compute multiple prefixes that are
similar to the partial keyword, and retrieve their corresponding
complete keywords as the similar keywords. The Incremental
fuzzy prefix finder incrementally identifies the prefixes in the
dataset that are similar to the query keywords. The idea of our
method is to use prefix filtering. That is, when the user types
in one more letter after the partial keyword, only the
descendants of the trie nodes of similar prefixes of the partial
keyword could be potentially similar prefixes of the new query
keyword. We use this property to incrementally compute the
similar prefixes of a new query. For a new query, the
Incremental fuzzy prefix finder first looks up similar prefixes
of previous queries from the server cache, computes similar
prefixes for the current query incrementally, and stores the
results in the cache for future computation.

Multi-keyword Intersection: This module takes the sets of
similar keywords produced by the fuzzy prefix finder as input
(for multiple keywords), and computes the relevant answers,
which contain a matching similar keyword from each set. For
the partial keyword, there could be multiple similar prefixes,
and each similar partial prefix has multiple similar keywords.
We call the union of each keyword’s similar keywords’
inverted lists the union list for this keyword. A straightforward
method to identify the relevant answers is to first construct the
union list for every keyword, and then compute the
intersection of the union lists. However, it is rather expensive
to construct these union lists on-the-fly. Figure 3(a) illustrates
an example in which we want to answer query “li database
vld”.

We can use forward lists to improve the performance of
computing the intersection. We choose the keyword with the
shortest union list based on estimation. We use the forward
index to check whether each candidate record on the shortest
union list contains similar keywords of every other query
keyword. If so, this record is an answer. To do this checking
efficiently, in the trie structure, each leaf node has a unique
keyword ID for the corresponding word. The keyword ID is
assigned in their pre-order on the trie. Each trie node
maintains the range of the keyword IDs in its subtrie. For the
keyword range of each similar prefix of other keywords, for
example, [s,l], we check whether the candidate record on the
shortest union list contains keywords in the range. We first use
a binary-search method to find the keyword ID on the
corresponding forward list. We get the smallest keyword ID
on the list that is larger than or equal to s. Then we check
whether the keyword ID is smaller than _. If so, this candidate
contains a keyword in the range. Figure 2(b) illustrates this
method using the running example.

Ranker: In order to compute high-quality results, we need
to use a good ranking function for the candidates. The function
should consider various factors such as the similarity between
a query keyword and its similar prefixes, the weight of each
keyword, term frequencies, inverse document frequencies,
importance of each record, etc. If the edit distance between an
input keyword and its similar prefixes dominates the other
parameters, we want to compute the answer with the smallest
edit distance first. If there are not enough top answers with
edit distance τ , we then compute answers with an edit distance
τ + 1, and so on.

Server Cache: After finding the answers to a query, we
cache the similar prefixes of each input keyword.
Accordingly, we can incrementally answer the subsequent
keyword queries using the cached similar prefixes. For the
query with multiple keywords, we also cache the relevant
answers. If the user types another keyword, we use the cached
results to answer the query by checking whether the cached
results contain the new keyword using the forward index. If
there are too many relevant records, we can just cache the
highly relevant ones. For each subsequent keyword, we first
use the cached records to compute the answer. If there are not
enough top answers, we continue to compute more answers
for the previous query and store the results in the cache. This
“ondemand” caching method can make sure each query can be
answered very efficiently, and we can cache results of a query
only if they are necessary. We can also postpone some
unnecessary computation when the user has more keystrokes.
In our design, not only the results but also the search context
at the termination point were saved for future computation.

Therefore, for a subsequent query, the system can use the
cached results of previous queries to answer it. If needed, the
system will also resume the search from the saved context
until top-k results are retrieved.

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1, Issue 12, December 2014)

58

Figure 2: Two methods for answering a keyword query “li database vld”

B. Client and Communication Design

The client side contains HTML contents with JavaScript
code interpreted or executed in the browser. When the user
types in a query, if there is no pending request being processed
by the server the JavaScript code issues an AJAX query to the
server. Otherwise, it waits until the request has been answered.
This is to avoid the case where the user types so fast that the
system is overloaded. The query results are returned in a
JSON format, and the matched prefixes are returned along
with the records. We highlight matching prefixes.

III. DEMONSTRATIONS

We developed several systems based on our techniques of
fuzzy type-ahead search. We will demonstrate the following
systems. (1) People Search (http://psearch.ics.uci.edu/): It
searches on the UCI people directory. (2) Search on DBLP
authors (http://dblp.ics.uci.edu/authors/): It searches in authors
with DBLP publications. (3) DBLP Search
(http://dblp.ics.uci.edu/): It searches on more than one million
DBLP publications. (4) Search on URL
(http://XML.cs.tsinghua.edu.cn/urlsearch/): It searches on
10M widely used URLs. In the experiments all queries can be
processed within 80 milliseconds per query. Our method has a
good scalability as illustrated in Figure 3. In addition to the
feature of fuzzy-type-ahead search, we will also demonstrate
the following features.

Figure 3 : Scalability

Highlighting Similar Prefix: We will show how to

highlight a prefix in the results that best matches a keyword.
Highlighting is straightforward for the case of exact matching,
since each keyword must be a prefix of the matching keyword.
For the case of fuzzy matching, a query keyword may not be
an exact prefix of a similar keyword. Instead, the query
keyword is just similar to some prefixes of the similar
keyword. Thus, there can be multiple similar keywords to
highlight. For example, suppose a user types in “lus”, and
there is a similar keyword “luis”. Both prefixes “lui” and
“luis” are similar to “lus”. There are several ways to highlight
“luis”, such as “luis” or “luis”. We highlight the longest
matched one (“luis”).

Using Synonyms: We can utilize a-priori knowledge about
synonyms to find relevant records. For example, in the domain
of person names, “William = Bill” is a synonym. Suppose in
the underlying data, there is a person called “William Kropp”.
If a user types in “Bill Cropp”, we can also find this person.
To this end, on the trie, the node corresponding to “Bill” has a
link to the node corresponding to “William”, and vise versa.
When a user types in “Bill”, in addition to retrieving the
relevant records for “Bill”, we also identify those of
“William” following the link. In this way, our method can be
easily extended to utilize synonyms.

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1, Issue 12, December 2014)

59

IV. CONCLUSION

In this paper, we studied the problem of fuzzy type-ahead
search in XML data. We proposed effective index structures,
efficient algorithms, and novel optimization techniques to
progressively and efficiently identify the top-k answers. We
examined the TASTIER based method to interactively identify
the predicted answers. We have developed a minimal-cost-
tree-based search method to efficiently and progressively
identify the most relevant answers. We proposed a heap-based
method to avoid constructing union lists on the fly. We
devised a forward-index structure to further improve search
performance. We have implemented our method, and the
experimental results show that our method achieves high
search efficiency and result quality.

REFERENCES

[1] H. Bast and I. Weber, “Type less, find more: fast autocompletion

search with a succinct index,” in SIGIR, 2006, pp. 364–371.
[2] H. Bast, A. Chitea, F. M. Suchanek, and I. Weber, “Ester:

efficient search on text, entities, and relations,” in SIGIR, 2007, pp.
671–678.

[3] H. Bast and I. Weber, “The completesearch engine: Interactive,
efficient, and towards ir& db integration,” in CIDR, 2007, pp. 88–
95.

[4] S. Ji, G. Li, C. Li, and J. Feng, “Interative fuzzy keyword search,”
in WWW 2009, 2009, pp. 371–380.

[5] S. Chaudhuri and R. Kaushik, “Extending autocompletion to
tolerate errors,” in SIGMOD, 2009, pp. 707–718.

[6] G. Li, J. Feng, and L. Zhou, “Interactive search in xml data,” in
WWW, 2009, pp. 1063–1064.

[7] G. Li, S. Ji, C. Li, and J. Feng, “Efficient type-ahead search on
relational data” in SIGMOD, 2009, pp. 695–706.

Authors Biography
S. Y. Jadhav was born in India, Maharashtra, in
191. He received the BE degree from Solapur
University, Solapur (MS). He is PG Scholarr of
DGOI, COE, Bhigwan, Pune (MS). His research
interest includes Data Mining.

T. A. Dhaigude was born in India, Maharashtra.
He received the BE, ME degrees respectively. He
is working as Asst. Professor at DGOI, COE,
Bhigwan, Pune (MS). His research interest
includes Data Minig.

Dr. D. S. Jadhav was born in India,
Maharashtra, in 1979. He received the BCA,
MCA, MBA degrees from Shivaji University,
Kolhapur (MS), University of Pune (MS) and
Sikkim Manipal University, NIMS University,
Rajasthan respectively. He was awarded PhD
Degree from Solapur University, Solapur. From
2008-2010 he was worked as lecturer Smt. K. W.
College, Sangli. From 2010 to 2012 he was
worked as Asst. Professor at Bharat Ratna Indira
Gandhi College of Engineering, Solapur (MS)
and Sinhgad Institute of Computer Sciences,
Pandharpur(MS) respectively. From August 2013
to till date he is working as Director at Ideal
Institute of Management(IIMK), Kondigre –
Ichalkaranji,, Kolhapur (MS). He has published
more than 30 papers in International and National
journals and conference Proceedings. He is
member of various National & International
Professional Bodies and member of Editorial /
Reviewer of various International Journals. His
research interest includes Cyber Crime, Cyber /
Computer Forensic, Information Security, Data
Mining, Big Data.

