International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1sdue 12, December 2014)

Professional Fuzzy Type-Ahead Rummage
Around in XML (Type-Ahead Search Techniques
In Large Data Sets)

Mr. S. Y. Jadhav
Student,, PG Scholar,
DGOI, COE, Bhigwan, Pune,

MS, India
sjsandeepjadhav@gmail,com

India

Abstract — It is a research venture on the new information-ecess
standard called type-ahead search, in which systems discover
responds to a keyword query on-the-fly as users tgin the
uncertainty. In this paper we learn how to supportfuzzy type-
ahead search in XML. Underneath fuzzy search is immrtant
when users have limited knowledge about the exact
representation of the entities they are looking farsuch as people
records in an online directory. We have developedral deployed
several such systems, some of which have been ussdmany
people on a daily basis. The systems received ovemitmingly
positive feedbacks from users due to their friendlynterfaces with
the fuzzy-search feature. We describe the design d@n
implementation of the systems, and demonstrate seaé such
systems. We show that our efficient techniques candeed allow
this search paradigm to scale on large amounts ofth.

Index Terms - type-ahead, large data set, server side, online
directory, search technique

. INTRODUCTION

Mr. T. A. Dhaigude
Assistant Professor,
DGOI, COE, Bhigwan, Pune, MS,

tanajidhaigudel@gmail.com

Dr. D. S. Jadhav
Director,
Ideal Institute of Management (IIMK),
Kolhapur, MS, India
dattatraya.jadhav30@gmail.com

Beyond treating a query as a single prefix: To adslithis
problem, recently a new type-ahead search paradigs
emerged. Such a system treats the query as a keywbrds,
and finds answers with these keywords. It does liatefxt
search on the underlying data “on the fly” as teerutypes in
query keywords letter by letter. In this way, theeucan get
instant feedback after typing a partial query, tbb&in more
knowledge about the underlying data, which helps dker
formulate queries. Bast et al. [1], [2], [3] debed several
techniques to do this type of search. An exampleghis
Complete Search system on DBLP1, which can find
publications that match multiple keywords in a quer
interactively.

To study how to support efficient type-ahead seanh
large amounts of data, we started a project call&&$TIER”,
which stands for “type-ahead search techniquesirigel data
sets”2. In this paper we focus on how to suppazy type-
ahead search in XML [4]. With our techniques, aetghead

Keyword search is important in information systems.system can find answers with keywordamilar to the

When using most Web search systems, a user typmaphete

query and waits for results from the server. In¢hse where
users have limited knowledge about the data oratoknow

the exact keywords of the entities they are looKimg often

they feel “left in the dark” when issuing queriesid have to
use a try-and-see approach for finding informatitdany

systems are introducing various features to sdlisegroblem.
One of the commonly used methodsaigocomplete, which

predicts a word or phrase that the user may typeased on
the partial string the user has typed in. As anmgta, almost
all the major search engines nowadays automatisaiggest
possible keyword queries as a user types in paeiavords.

One limitation of traditional autocomplete is thtte
system treats a query with multiple keywords asirgle
string, thus it does not do a full-text search on thead&br
instance, consider the search box on Apple.congiwailows
autocomplete search on Apple products. Althougkeyword
query “itunes” can find a record “itunes wi-fi masstore,” a
query “itunes music” cannot find this record , siynpecause
this query stringas a whole does not appear in the record.

55

keywords in a query. It is based on the followingtivation.

Often users can make mistakes when they type imiegje
especially when they have limited knowledge abbet data.
For instance, a user looking for the publicatiogsChristos

Faloutsos might not know the exact spelling of thehor

name (Figure 1). Our techniques are also usefuhvihere are
errors and inconsistencies even in the data itself.

Query performance is a key issue in designing suitizzy
type-ahead search system, since there could be quenées
submitted to the system than a traditional systaend each
query should be answered within milliseconds. lis faper
we describe several such systems developed using
techniques. We describe their design and implertientaand
use performance numbers to show that our technigaes
indeed make this search paradigm scale on largeussof
data. Compared to our earlier publications, herenmnly
focus on the architecture and demonstrations cfetlsgstems.
A possible concern about these systems is their
“disruptiveness,” i.e., each keystroke from the ruseuld
invoke a query on the server. We address this ¢oneging
the following facts. (1) “Search-as-you-type” irfieres have
been widely adopted in many search engines and Web

ou

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1sdue 12, December 2014)

services. (2) In the database community, the récdeployed
CompleteSearch DBLP system with this feature has lveell

received. (3) We have deployed several systems siitlilar

features, and received very positive feedbacks fusars due
to the friendly interfaces and high efficiency. (#heeded, we
do not need to submit a query to the server foh éagstroke.
In each of our systems, the client sends a singgeygpossibly
after multiple letters are typed in if these letterere typed in
when the server was still processing the previausryy We
can easily add a delay on the client side afteregstkoke
(using JavaScript) for users who type in a query Yast. This
feature is especially useful when the user initit§lpes in a
query quickly, and pauses to digest the informafiom the

server. A big advantage of this type-ahead interfado allow

users taexplore the data when formulating a query. Chaudhuri

et al. [5] studied how to find similar strings irdetively as
users type in a query string, using an approaciissino that
in [4].

1. SYSTEM ARCHITECTURE AND
IMPLEMENTATION

Figure 1 illustrates the client-server architectwk a
system using our XML techniques. We assume thenyidg
data is a set of records residing on a server.n@thod can be
extended to support type-ahead search on docuniéitk,
data [6], and relational databases [7]. The clisna Web
browser. A user uses the Web browser to send rexjteethe
server over the Internet and see the results fiwanserver.
Each keystroke of the user could invoke a queryjclvh
includes the current string the user has typedlive browser
sends the query to the server. The server toketlieeguery
string, computes and returns to the user the bestvers
ranked by their relevancy to the query. Figure \legitwo
screenshots of fuzzy type-ahead search on a DBt&etaand
a MEDLINE dataset in the medical domain. For eaabry
sent to the server, we treat the last keyword gsaréial
keyword the user is completing, and other earlier keywarsls

complete keywords.3 For each complete keyword, we identify

the keywords in the data that are similar to thgward. For
the partial keyword, we identify itsmilar keywords as those
in the data with a prefix similar to the partialykeord.

We use edit distance to quantify the similarityizn two
wordswi andwj , denoted as ed{, wj). The edit distance
between two words is the minimum number of editrapens
(i.e., insertion, deletion, and substitution) aigde characters
needed to transform the first one to the second.ekample,

Client Server
ﬂ User FastCGI Server
Types Reads

Intarsaction

Ranker J—
Reconds
Multi-keywords

Indices

Top-K Records

Intemet

AJAX Requests/
Responses

Client: Web Browser Y P

SN I L e o

Figurel:. Fuzzy type-ahead search architecture

We compute theelevant records that contain a similar
keyword for every keyword, and return the most vate
records ranked by their relevancy to the query.

There are several components on the server side. Th
Indexer component indexes the underlying data afsiea
structure with inverted lists of keywords in thafl@modes. We
build a Fast CGI module on the Web server to stioeedata
and indices. Different from a CGI module, the Fa&tl server
module is loaded once when the Web server stand, a
continually handles queries without spawning mastances.
Therefore the server loads the data and indicen fle disk
once, and then searches on the data in memory wtitho
accessing the disk. The Fast Cgi Server waits dierigs from
the client, and caches query results. The Servech€a
component checks whether the query can be answsiag
the cached results. If not, the server incremgntaibwers the
query by using the cached information. For eachryue
keyword, the Fuzzy Prefix Finder incrementally cangs its
similar keywords.

The Multi-keyword Intersection module computes the
relevant answers that contain at least one similar keyword for
every input keyword. The Ranker module ranks thenans to
identify the topk best answers for a constant

A. Server Design

We present the design of the server modules. Weecho
C++ to build the server module due to its high perfance.
Indexer: It is an offline process that reads detanfspecified
sources, tokenizes the data, and creates the fajow

ed(feloutosefaloutsos) = 3. We say two keywords are similargcryres: (1) a radix trie structure with inverésts on the

if their edit distance is within a given threshodd This
threshold could be proportional to the length ofgaery
keyword to allow more errors for longer keywords.

56

corresponding leaf nodes; (2) a forward index #tates the
sorted list of keyword IDs for each record; (3) thea itself.
Each wordw in the data corresponds to a unique path from the
root of the trie to a leaf node. Each node on thth fhas a
label of a character iw. The nodes with the same parent are
sorted by the node label in their alphabetical oréer each
leaf node, we store an inverted list of IDs of melsothat
contain the corresponding word. To improve perfarcea

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1sdue 12, December 2014)

optionally we can also maintain a forward indexjckhkeeps
the sorted keyword IDs for each record.

Incremental Fuzzy Prefix Finder: It is part of thastCGl
module. In the case of exact search, there exidtsane trie
node corresponding to a partial keyword. Howewesupport
fuzzy search, we need to compute multiple prefitkeg are
similar to the partial keyword, and retrieve their corresfing
complete keywords as ttemilar keywords. The Incremental
fuzzy prefix finder incrementally identifies thegfixes in the
dataset that are similar to the query keywords. idlka of our
method is to use prefix filtering. That is, whem thser types
in one more letter after the partial keyword, ortlye
descendants of the trie nodes of similar prefixethe partial
keyword could be potentially similar prefixes oéthew query
keyword. We use this property to incrementally catepthe
similar prefixes of a new query. For a new querye t
Incremental fuzzy prefix finder first looks up slani prefixes
of previous queries from the server cache, compsit@dar
prefixes for the current query incrementally, andres the
results in the cache for future computation.

Multi-keyword Intersection: This module takes thegssof
similar keywords produced by the fuzzy prefix finde input
(for multiple keywords), and computes thetevant answers,
which contain a matching similar keyword from eaet. For
the partial keyword, there could be multiple simifefixes,
and each similar partial prefix has multiple simikeywords.
We call the union of each keyword's similar keywsrd
inverted lists theunion list for this keyword. A straightforward
method to identify the relevant answers is to fa@tstruct the
union
intersection of the union lists. However, it ishet expensive
to construct these union lists on-the-fly. Figufa)3llustrates
an example in which we want to answer query ‘“liathase
vid”.

We can use forward lists to improve the performaote
computing the intersection. We choose the keywoitt the
shortest union list based on estimation. We usefdh&ard
index to check whether each candidate record orstibetest
union list contains similar keywords of every othguery
keyword. If so, this record is an answer. To da ttiecking
efficiently, in the trie structure, each leaf noldas a unique
keyword ID for the corresponding word. The keywditd is
assigned in their pre-order on the trie. Each tniede
maintains the range of the keyword IDs in its sebtFor the
keyword range of each similar prefix of other keyds for
example, §1], we check whether the candidate record on the
shortest union list contains keywords in the ranye.first use
a binary-search method to find the keyword ID or th
corresponding forward list. We get the smallestwkayl ID
on the list that is larger than or equalgoThen we check
whether the keyword ID is smaller thanlf so, this candidate
contains a keyword in the range. Figure 2(b) itatsts this
method using the running example.

57

Ranker: In order to compute high-quality resulte, meed
to use a good ranking function for the candidatés function
should consider various factors such as the siityilaetween
a query keyword and its similar prefixes, the weigheach
keyword, term frequencies, inverse document fregiesn
importance of each record, etc. If the edit distabetween an
input keyword and its similar prefixes dominateg thther
parameters, we want to compute the answer wittsimlest
edit distance first. If there are not enough togvesrs with
edit distance , we then compute answers with an edit distance
r+ 1, and so on.

Server Cache: After finding the answers to a quarg,
cache the similar prefixes of each input keyword.
Accordingly, we can incrementally answer the subseg
keyword queries using the cached similar prefixest the
query with multiple keywords, we also cache thesvaht
answers. If the user types another keyword, wethseached
results to answer the query by checking whetherctizhed
results contain the new keyword using the forwamdiek. If
there are too many relevant records, we can justhecahe
highly relevant ones. For each subsequent keywoedfirst
use the cached records to compute the answereri gre not
enough top answers, we continue to compute more/eass
for the previous query and store the results incéghe. This
“ondemand” caching method can make sure each qagrpe
answered very efficiently, and we can cache resilesquery
only if they are necessary. We can also postpormaeso
unnecessary computation when the user has morérdess.
In our design, not only the results but also therce context
at the termination point were saved for future catapon.

list for every keyword, and then compute the

Therefore, for a subsequent query, the system sarthe
cached results of previous queries to answer itedded, the
system will also resume the search from the sawdegt
until topk results are retrieved.

[ists mlevant meords

=678

kewords

vid

similar prefixes — similar keywords

-l »vldb

.
u,
*a,
*s

database™ databasc—pdatahases===» 3456 789 10 I

L

L J

l

W

.
>

(a) By intersecting union lists

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1sdue 12, December 2014)

keywords lists relevant records

vld

similar prefixes keyword ranse

—> e [§,§] sesseds 67 Gurnneei]

database=—databascem & 2 97--.. /

i==r 35 TP
Jj —— [8 &] _'

= < o] ,f i 5
h”— — h] 4‘. 1!. '_f
L L 7|8

" " /

u=——» [535] .
[iu AL EA " Forward Index

Jij = [7,7]

Jyom - [67]

(b) By probing lists
Figure 2: Two methods for answering a keyword quégatabase vid”
B. Client and Communication Design

The client side contains HTML contents with JavgScr
code interpreted or executed in the browser. Wihenuser
types in a query, if there is no pending requestdprocessed
by the server the JavaScript code issues an AJAXycgo the
server. Otherwise, it waits until the request hesrbanswered.
This is to avoid the case where the user typessbtiiat the
system is overloaded. The query results are retuinea
JSON format, and the matched prefixes are retualedg
with the records. We highlight matching prefixes.

I1l. DEMONSTRATIONS

We developed several systems based on our teclsnafue

fuzzy type-ahead search. We will demonstrate thieviing
systems. (1) People Search (http://psearch.icediwd). It
searches on the UCI people directory. (2) SearctbBhP
authors (http://dblp.ics.uci.edu/authors/): It sbas in authors
with DBLP publications. 3) DBLP Search
(http://dblp.ics.uci.edu/): It searches on morentbae million
DBLP publications. (4) Search on
(http://XML.cs.tsinghua.edu.cn/urlsearch/): It sd@s on
10M widely used URLs. In the experiments all queigan be
processed within 80 milliseconds per query. Ourhoéthas a
good scalability as illustrated in Figure 3. In aidd to the
feature of fuzzy-type-ahead search, we will alsmadlestrate
the following features.

58

URL

0 T EdtDibanke Thredhold=2 T—— T3
— &0 E Edit-Distance Threshold=1 ---s-— 3
w [Edit-Distance Threshold=0 --—-#--— -]
2 s E A
T O f 5
E wf %
= uf]
G s]
g 2F b
d E K %
10 E _,..-i*' ™ . = X E
o E Foa¥F) R S B
0 1 2 3 4 5§ 6 7 8 9 10
i of records (* million)
(@) URL dataset.
&0 [T T T T T | T T
[Edit-Distance Threshold=2 ——
50 E Edit-Distance Threshold=1 —--=—--
I Edit-Distance Threshold=0 ---#--- P
a0 b ul
30 f

Avg Search Time(ms)

T
¥ X \
Y
¢k
Ix
sl bevrs b benan bians

U: 1 1 1 1 1 1
15 2 285 3 25

of records (* million)

(b) PubMed dataset
Figure 3 : Scalability

s

Highlighting Similar Prefix: We will show how to
highlight a prefix in the results that best matchelseyword.
Highlighting is straightforward for the case of ekanatching,
since each keyword must be a prefix of the matckayyvord.
For the case of fuzzy matching, a query keyword matybe
an exact prefix of a similar keyword. Instead, theery
keyword is just similar to some prefixes of the i&m
keyword. Thus, there can be multiple similar keysgorto
highlight. For example, suppose a user types is”;land
there is a similar keyword “luis”. Both prefixesufl and
“luis” are similar to “lus”. There are several watgshighlight
“luis”, such as “luis” or “luis”. We highlight thdongest
matched one (“luis”).

Using Synonyms: We can utilize a-priori knowleddgp®at
synonyms to find relevant records. For exampléhédomain
of person names, “William = Bill" is a synonym. $gse in
the underlying data, there is a person called ‘il Kropp”.
If a user types in “Bill Cropp”, we can also finkig person.
To this end, on the trie, the node correspondinBill’ has a
link to the node corresponding to “William”, andsei versa.
When a user types in “Bill", in addition to retrieag the
relevant records for “Bill", we also identify thosef
“William” following the link. In this way, our metbd can be
easily extended to utilize synonyms.

International Journal of Ethics in Engineering & Management Education

Website: www.ijeee.in (ISSN: 2348-4748, Volume 1sdue 12, December 2014)

IV. CONCLUSION

Authors Biography

In this paper, we studied the problem of fuzzy tgbead
search in XML data. We proposed effective indexcitires,

efficient algorithms, and novel optimization teduns to
progressively and efficiently identify the top-ksavers. We

examined the TASTIER based method to interactiidgntify

the predicted answers. We have developed a mirgost-

tree-based search method to efficiently and pregely

identify the most relevant answers. We proposedapibased

method to avoid constructing union lists on the. fliye

devised a forward-index structure to further immasearch
performance. We have implemented our method, amed th

experimental results show that our method achievigh

search efficiency and result quality.

[1]
(2]

(3]

[4]
[5]
[6]
[7]

REFERENCES

H. Bast and |. Weber, “Type less, find more: fasioaompletion

search with a succinct index,” 8iGIR, 2006, pp. 364-371.

H. Bast, A. Chitea, F. M. Suchanek, and |. Webdtstér:
efficient search on text, entities, and relatioms 3GIR, 2007, pp.

671-678.

H. Bast and |. Weber, “The completesearch engintractive,

efficient, and towards ir& db integration,” @IDR, 2007, pp. 88—

95.

S. Ji, G. Li, C. Li, and J. Feng, “Interative fuzzgyword search,”

in VW 2009, 2009, pp. 371-380.

S. Chaudhuri and R. Kaushik, “Extending autoconimetto

tolerate errors,” irlGMOD, 2009, pp. 707-718.

G. Li, J. Feng, and L. Zhou, “Interactive searctximl data,” in

WWW, 2009, pp. 1063-1064.

G. Li, S. Ji, C. Li, and J. Feng, “Efficient typbead search on

relational data” i GMOD, 2009, pp. 695-706.

59

S. Y. Jadhavwas born in India, Maharashtra, in

191. He received the BE degree from Solapur
University, Solapur (MS). He is PG Scholarr of
DGOI, COE, Bhigwan, Pune (MS). His research
interest includes Data Mining.

T. A. Dhaigude was born in India, Maharashtra.
He received the BE, ME degrees respectively. He
is working as Asst. Professor at DGOI, COE,
Bhigwan, Pune (MS). His research interest
includes Data Minig.

Dr. D. S. Jadhav was born in India,
Maharashtra, in 1979. He received the BCA,
MCA, MBA degrees from Shivaji University,
Kolhapur (MS), University of Pune (MS) and
Sikkim Manipal University, NIMS University,
Rajasthan respectively. He was awarded PhD
Degree from Solapur University, Solapur. From
2008-2010 he was worked as lecturer Smt. K. W.
College, Sangli. From 2010 to 2012 he was
worked as Asst. Professor at Bharat Ratna Indira
Gandhi College of Engineering, Solapur (MS)
and Sinhgad Institute of Computer Sciences,
Pandharpur(MS) respectively. From August 2013
to till date he is working as Director at Ideal
Institute of Management(lIMK), Kondigre —
Ichalkaranji,, Kolhapur (MS). He has published
more than 30 papers in International and National
journals and conference Proceedings. He is
member of various National & International
Professional Bodies and member of Editorial /
Reviewer of various International Journals. His
research interest includes Cyber Crime, Cyber /
Computer Forensic, Information Security, Data
Mining, Big Data.

