International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1sdue 10, October 2014)

Design of QSD Number System Addition using
Delayed Addition Technique

S.Mallesh

Dr.C.V.Narasimhulu

Geethanjali College of Engineering & Technology thaejali College of Engineering & Technology

Hyderabad
mallesh9549@gmail.com

Abstract: Quaternary number system is a base-4 numeral system
Using Quaternary Signed Digit (QSD) number systemmay also
execute carry free addition, borrow free subtractim and
multiplication. The QSD number system wants a diffeent group
of prime modulo based logic elements for each arithetic
operation. In this work we extend this QSD additionto Delayed
addition in place of carry free addition. Carry free addition
generates intermediate carry and intermediate sumpn this carry
propagation is required to generate intermediate son. To reduce
carry propagation we evaluated delayed addition. T delayed
addition reduces carry propagation and improves atihmetic
calculations. We present both QSD and Floating —poi single
precision addition using delayed addition. The degh work is
carried by using Verilog HDL in ISE.

Keywords: QSD, DA, CFA and Floating-Point.
[. INTRODUCTION

Quaternary is the base-4 numeraegysThe degree
of redundancy usually increases with increase dikrdt uses
the digits 0, 1, 2 and 3 to signify any real numheshares
with all fixed-radix numeral systems many propestisuch as
the capability to signify any real number with ancaical
illustration (almost unique) and the charactersstiof the
representations of rational numbers and irration@hbers.

The high speed digital circuit uses the asi
arithmetic operations. These arithmetic operatiares widely
used and play significant role in different digitgistems such
as computers and signal processors. Designinghtitismetic
unit using QSD number representation has attra¢hed
interest of many researchers. Additionally, curahtances in
technologies for included circuits make large s@althmetic
circuits suitable for VLSI implementation. The pose a high

Hyderabad
narasimhulucv@gmail.com

+ 444

al[n] a2[n] a3[n] a4[n] al[1] a2[1] a3[1] a4[1]
cout cin [——-———~— ~4— cout cin
s[n] enl s[1] 1]

IR 3

Fig 1.(b)
Fig.1 a) n bit adder using 3:2 compressors
Fig.1 b) n bit adder using 4:2 compressors

In the present work the design of an QSDeadd
using 3:2 and 4:2 compressors and also we desifijpeiihg
point adder in Verilog HDL in Xilinx ISE environmémased
on Spartan 3E FPGA family.

Present work is divided as follows: Settit
presents the QSD number system; section Il prestra
Carry Free addition; section 1V is dedicated dethgedition
and floating point number system and finally settibis for
conclusion of the work.

II. QSD NUMBER SYSTEM

QD numbers save 25% storage compared to
BSD:To represent a numeric value N lol Aumber of QSD
digits and 3 log Ml binary bits are required while for the same
log 2N BSD digits and2 log 2N binary bits are required in
BSD representation. Ratio of number of bits in
QSD to BSD representation for an arbitrary numbeis N3
[log 4 N| / 2| log 4 N| which roughly equals to herefore
QSD saves % storage used by BCD.

The proposed QSD adder is better than RBSD adder
in terms of number of gates, input connections dethy
though both perform addition within constant tinkeoposed

speed QSD adder design. The QSD addition operatiofesign has the advantages of both parallelisms els as

employs a fixed number of min terms for any opersiad. By
using Wallace trees to accumulate results withoatryc
propagation over head. The Wallace tree uses 3:2:2r
compressors to perform addition operation. The 1fig.
represents the n bit addition using 3:2 and 4:2pressors.

v v ¥

al[n] a2[n] a3[n]

s[n] ec[n]

v+

Fig 1.(a)

v ¥ 3

al[1] a2[1] a3[1]

s[1] e[1]

vy

reduced gate complexity. The computation speed cinedit
complexity increases as the number of computati@pss
decreases. A two step schemes appear to be a prlugoe

in terms of computation speed and storage complexit
Quaternary is the base 4 redundant number systdma. T
degree of redundancy usually increases with theease of
the radix [3]. The signed digit number system a#fous to
implement parallel arithmetic by using redundan€ySD
numbers are the SD numbers with the digit set &:%1, 0,1,

2, 3 }where 3, 2, and 1 represent -3, -2, ancesbectively. In

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1sdue 10, October 2014)

general, a signed-digit decimal number D can beessmted
in terms of an n digit quaternary signed digit nemas

n-1
D=> X4
i—0
where xi values are { -3, -2,-1, 0,1, 2, 3 }for

producing an appropriate decimal representatiom. digital
implementation, QSD numbers are represented ushig Bs
complement notation. A QSD negative number is tIf&DQ
complement of the QSD positive number [3]. For epbm
using primes to denote complementation, we have 3, 3'
=3,2'=2,22=2,1=1,1'=1.
Example: The QSD is applied for any two numbers A =
and B = 233 (One number is positive and anotherbaurns
negative).

First convert the decimal number to their equivalen

QSD representation:
(107)10=(1223) QSD
(233)10=(3221) QSD
107+233=(340)10 = (11110)QSD.

The Table 1 representing the Decimal to quatermanypber
representation.

Decimal Number system Quaternary Number
system

0 0

1 1

2 2

3 3

4 10

5 11

6 12

7 13

8 20

9 21
10 22

Table 1.
I1l. CARRY FREE ADDITION

The range of input numbers can differ from -3 tq $8 the
addition result will differ from -6 to +6 which wéntwo QSD
digits. The lower significant digit serves as sumd amost
significant digit serves as carry. The generatibntle carry
can be avoided by mapping the two digits into ar pdi
intermediate sum and intermediate carry such that rith
intermediate sum and the (n-1)th intermediate cameyer
form any carry generating pair (3,3), (3,2), (3(B), 3), (3, 2
), (3,1). If we restrict the representation suclatthhe
intermediate carry is limited to a maximum of 1,dathe
intermediate sum is restricted to be less thaméh the final
addition will become carry free.

107 Using 6 variable K-map, the logic equationscsyeng a

minimal hardware realization for generating thesintediate
carry and intermediate sum are derived. The mimgdor the
intermediate carry (IC2, IC1, ICO) are:

IC, = a,b, l.”oboalbl .)+[‘n1 +bz. _ﬂza"'bzafo)

ICy=a3b; (aobonlbl)+ (”1 + b X”zbo +b,a,)
IC, = IC, + a,b,(a,b, +b,b, +bya, +ba, +a,a,)
Minterms for intermediate sums are:

I5, = ﬂoa + {Tobo

I8, = (_albil—i-nilbl Eobo + (c?lg-l—abl)ﬂobo

1S, = IS, (”_1[71 + ﬁlb_l_)+ b, ”_1% & ﬂzaa+ ”ubnn_la(”z 1

The final sum which is carry free is generated fthose
outputs i.e. Intermediate carry (IC2, IC1, and 1@dy
Intermediate sum (I1S2, 1S1, and 1S0). Thereforhai
six input and three output bits.

Two steps concerned in the carry-free addition. The

first step generates an intermediate carry and 3in@.second
step combines the intermediate sum of the presegittwiith
the carry of the lower significant digit. To avoddrry from
further rippling, two rules are used. The firstergbntains that
the magnitude of the intermediate sum must be tlegs or
equal to 2. The second rule contains that the matmof the
carry must be less than or equal to 1. Consequetite
magnitude of the second step output cannot be egréfzn 3
which can be represented by a single-digit QSD rermb
hence no further carry is required. In step 1palsible input
pairs of the addend and augends are measured.

lll. Delayed Addition and Floating Point Addition
Delayed Addition:
A multiply-accumulator unit consists of a multipliand an
Adder, he hardwired ripple-carry adder is the feistBefore
continuing on detailed designs, we will first giwe brief
review on some basics of Wallace tree and its dévies. One
level of Wallace tree is composed of arrays3<4f adders (or
compressor3. The logic of a 3-2 adder is the same as a full
adder except the carry-out from the previous bis maw
become an external input. For each bit of a 3-2gdte logic
is:

SIi] = A1[i] A A2[i] A A3[i];

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1sdue 10, October 2014)

C[i] = A1[iJA2[i]+ A2[i]A3[i] + A3[i]A1]i];
For the whole array, S+2C = A1 + A1 +A3

S and C are partial results that we refer to is ffaper as the

a challenge to our delayed addition technique simeelo not
keep the accumulated result in its final form, &mas cannot
align incoming addends to it. Likewise, at the esfdthe
computation, renormalization also impedes a delagstition

pseudo-sum. They can be combined during a final additionapproach.

phase to compute a true sum. The total number mdtén
across an entire level of a 3-2 adder array isstme as the
bit-width of the inputs. The typical logic is:

Coufi] = AL[iJA2[i] + A2[i]A3[i] + A3[i]A1]i] ;
S[i] =A1[i] A A2[i] A A3[i] A A4[i] A C [i] ;
C[i] = (A1[i] A A2[i] A A3[i] A A4[i)C n[i] +
@(AL[i] A A2[i] A A3[i] A A4[i])A4[i] ;
For the whole array, S+ 2C=A1+ A2 + A3 + A4
Pseudo-sum = Pseudo-sum + (the final two partiatpects
for each multiplication).

Floating Point Representation:

A floating-point MAC unit uses too much area to fit
on a single FPGA chip. The major reason is thaatiihg-
point accumulation is a much more complex prockas the
integer case, as explained below. Rather than a MAEC we
instead focus here on a floating-point accumulaising
delayed addition.

|s‘ exponent | fraction ‘
31 30 23 22 0

IEEE single precision format.

S is the sign: exponent is biased by 127.

If exponent is not 0 (normalized), mantissa = 1.fraction
If exponent is 0 (denormalized), mantissa = 0.fraction

Figure 2: floating point representation

As shown in Fig.2, a traditional floating-point adder would
first extract the 1-bit sign, 8-bit exponent and R3raction of
each incoming number from the IEEE 754 single ieni
format. By checking the exponent, the adder detegmiif
each incoming number is de normalized. If the ermbrbits
are all “0”, which means the number is de normalijzthe
mantissa is 0.fraction, and otherwise, mantissa.figction.
Next, the adder compares the exponents of the tmwobers
and shifts the mantissa of the smaller number totigem
aligned. Sign-adjustments also occur at this pidieither of
the incoming numbers is negative. Next, it adds tie
mantissas; the result needs another sign-adjustihéantis
negative. Finally the adder re-normalizes the sadijiists the
exponent accordingly and truncates the resultingtissa into
24 bits by the appropriate rounding scheme. Thevabo
algorithm is designed for a single addition rattieem a series
of additions. Even more so than in the integer cabkis
straightforward approach is difficult to pipelin@ne problem
lies in the fact that the incoming next elementbéeasummed
must be aligned with the current accumulated re$hits adds

3

| 55-bit register for self-aligned Incoming number |

v vy

|3-2 adder array 0 | |3-: adder array 1 |

“' MUX Hv/J E’r MUX ‘1r <J
S i

\ 0
MUX 1 /47

vy

| 64-bit register for pseudo-sum

\ A J
Figure 3: compressor design.

Figure 3 shows the design layout for one of the two
compressor units in the design, namely compressor-0
Compressor-1 has essentially identical structuregpt that it
cross-connects with adder-0 as shown in Figure He T
running pseudo-sum is stored as the Wallace teeisd C
partial results in the 64-bit registers shown. Weret for the
possibility of either pseudo-sum overflowing, thesin
would now be complete. Since the accumulated ravaly
exceed the register capacity, we have also dedgedhnique
for recognizing and responding to potential psesuala
overflows. Since we are not doing the full carrgyagation

of a traditional adder, we cannot use the tradaicverflow-
detection technique of comparing carry-in and cauyat the
highest bit. In fact, without performing the firedd to convert
the pseudo-sum to the true sum, it is impossiblprazisely
know apriori when overflows will occur.

|Pipeline Stage]l Read in and generate 24-bit Pipelined Portion
b mantissa
[Pipeline Stage 2' Shift by EXP[2] - EXP[0]
v
i Shift by EXP[4]-EXP[3]
|\P1pel.ine Stage jl Complement the mantissa
ifs=1
I i
Pipeline Stage 4' Conpressor 0 Compressor 1
(adder not included) (adder not included) Overflow
I \ I Detection & ||
¢ L Handling
Stall response [64bitadder0 | [stvitadder1 |
GlobalStall
Align the munbers from
Fal Addition and AdderiCiand adder]
Normailzation P
(Not pipelined) Final 64-bit adder
Nommalize the resolt Combinational logic
(Not pipelined)

Figure 4: floating point accumulation scheme.

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1sdue 10, October 2014)

V.CONCLUSION

QSD number system addition using delayed additeomg
floating point addition using delayed addition hhsen
designed using Verilog HDL the simulations are perfed
using Active HDL and implementation performed using
Xilinx tool.

REFERENCES

[1]. A. Avizinis “signed digit number representation fast parallel
arithmetic”, IRE Transactions on Elec. Comp..Vol-EGpp 389-
400,sept-1961.

[2]. A.A.S. Awwal and J.U. Ahmed, “fast carry free addisign using
QSD number system ,’proceedings of the IEEE 199&omal
aerospace and electronic conference, vol 2,pp 1088;1993.

[3]. F. Kharbash and G. M. Chaudhry, “Reliable Binargr®d Digit
Number Adder Design”, IEEE Computer Society Ann8gmposium
on VLSI, pp 479-484, 2007.

[4]. John Moskal, Erdal Oruklu and Jafar Saniie, “Desagd Synthesis of
a Carry-Free Signed-Digit Decimal Adder”, IEEE Imational
symposium on Circuits and Systems, pp 1089-10927 20

[5]. P. K. Dakhole, D.G. Wakde, “ Multi Digit Quaternargdder
onProgrammable Device : Design and verification”,
InternationalConference on Electronic Design, pg, Dec 2008.

[6]. IEEE Standards Board. “IEEE Standard for Binaryakty-Point
Arithmetic”. Technical Report ANSI/IEEE Std. 75488 Institute of
Electrical and Electronics Engineers, New York,3.98

