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Abstract: Aerodynamic stability of a proposed Cable Stayed Pre-
stressed Concrete Bridge of span 480 m under wind loads have 
been studied. Flutter and buffeting responses due to wind loads 
was investigated on a sectional mode to the scale of 1:200. The 
model was tested in a  wind tunnel for two values of damping 
(0.03 and 0.06) with different combinations of live loads at the 
ratio of  Nθ / Nz =1.2. The model exhibited coupled vertical and 
torsional oscillations in wind. In addition, another uncoupled 
mode in the form of rolling oscillation about the longitudinal axis 
of the tunnel was also consistently observed. This type of 
oscillation has not been reported in the literature and is believed 
to be due to the overtone flexural oscillation of the main span of 
the bridge. After trying out several curative measures, it was 
found that provision of small holes in the bottom of the deck, 
controlled the vertical and rolling oscillations. The test results 
were compared with the theoretical (design) values and 
conclusions drawn for predicting flutter and buffeting responses 
due to wind loads. Fatigue tests were also conducted on ' Ganga 
Bridge ' (Haridwar, U.P, India) and suitable remedial measures 
were suggested to increase the life of the bridge. 
 
Key words— Long-span bridges, Flutter, Buffeting, Aerodynamic 
selection, Preliminary  design stage 

 
I. INTRODUCTION 

 
 Of the several bridges existing all over the world, built 
of different material or techniques developed, cable stayed 
bridges stand out as the most recent technological 
development. Stromsund Bridge was the first cable stayed 
highway bridge constructed in Sweden in 1955 with a central 
span of 183 m. Subsequently, a number of cable stayed bridges 
were constructed world over in many countries. Cable stayed 
bridges are considered to be the most suitable system for the 
medium long spans in the range of 100 m to 300 m. However, 
there has been a continuous endeavor to this span limitation. 
Tatara bridge (Japan) with a world record span of 890 m 
opened up the vision for researchers to study the adoption of 
cable stayed systems with spans exceeding 1000 m which has 
been hitherto suspension system. In India too, after the 
completion of Vidyasagar Sethu Bridge (also known as Second 
Hooghly Bridge) at Calcutta, which was the world’s longest 
(457.2 m) cable stayed bridge until 1992, cable stayed system 
found an appropriate place with wider adoption in the years to 
follow. 

The bridge structure requires to be designed for static as 
well as for dynamic wind effects. Static wind loads are derived 
from an assumption of a steady uniform wind with lift, drag 
and moment forces. There have been many instances of 
bending and torsional oscillations of such bridges even at 
moderate speeds. The most spectacular case has been that of 
the original Tacoma Narrows Bridge which finally failed in a 
torsional mode of oscillation at a wind speed of 67 
kmph(ASCE, 1948).Since the Tacoma Narrows bridge 
collapse in 1940, wind engineering researchers made great 
efforts to understand the aeroelastic phenomena associated 
with long span bridges; namely vortex shedding, galloping, 
divergence, flutter, and buffeting response. However, in 
particular, flutter instability and buffeting response of the 
Cable stayed bridge decks are important to obtain the 
aerodynamic stability and can be checked by conducting the 
wind tunnel tests, which are more accurate.  

Flutter is an oscillatory instability induced in the bridge 
deck at a particular critical wind velocity leading to an 
exponentially growing response. One or more modes may 
influence this instability leading to failure due to excessive 
deflections and stresses. Flutter is the aeroelastic instability, 
which originates from the mutual interaction of elastic, 
inertial, damping and self-excited aerodynamic forces. It 
causes the bridge to oscillate in a divergent and destructive 
manner at the same critical wind velocity. Buffeting is the 
random response of a structure due to turbulence in the 
oncoming flow, or due to signature or self-induced turbulence. 
Buffeting response does not generally lead to catastrophic 
failures but is important from serviceability consideration. 
Fatigue is a process of progressive permanent internal 
structural change in a material subjected to repetitive stresses. 
These changes result in progressive growth of cracks and 
fracture. Fatigue is often described as ‘fatigue life’, which 
essentially represents the number of cycles required to cause 
failure in the material under a given repetitive stress. 

 

II. LITERATURE REVIEW 

 
V. Numes, J.W.C and Person A.J., (1979) investigated the 
vibrational behaviour of cable-stayed bridge under wind loads 
in a two-dimensional model and wind tunnel experiments 
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were carried out to establish the structural stability of the 
bridge and to determine resonance vibration due to vortex 
shedding (1979). Aerodynamic response of a bridge is affected 
by mean wind direction as well as turbulence. Bridge 
buffeting in yawed wind was investigated by Tanaka et al 
(1993) and Kimura et al (1992) and vortex excited oscillation 
on 2D and 3D models of rectangular section were investigated 
by Utsunomiya et al (1993). Several investigations [e.g; 
Miyata et al,(1994),  Chen (1994), Tanaka et al (1993), 
Namini et al,(1992), Jones and Scanlan (1991), Bucher and 
Lin (1988,1989) and Lin and Yang(1983)] identified the 
problems of multimode response of long span cable bridges to 
wind excitation. Analysis of flutter and buffeting can be done 
in two ways using time domain methods of Bucher and 
Lin(1988,1989), or frequency domain methods of Tanaka et al 
(1993), Jones and Scanlan(1991), Scanlan and  Jones and Lin 
and Yang (1983). Studies by Tanaka et al (1993), and Bucher 
and Lin (1988, 1989) proposed solutions to the multimode 
flutter and the multimode buffeting problems .Recently, 
multimode flutter and buffeting analyses were developed by 
Jain et al, (1996) based on frequency-domain methods and 
incorporated the theory of Scanlan and Jones (1990), taking 
into account the fully coupled aeroelastic and aerodynamic 
response of long span bridges to wind excitation. However, 
the extent of this coupling was not significant for the span 
lengths considered.  

III.  ANALYTICAL  METHODS 

Flutter 
The frequencies of oscillation of the proposed bridge are 
identified and have been analysed based on the following 
assumptions:  

(i) All spans have identical mode shapes during 
vibration. 
(ii)  The interference of the piers is neglected. 
(iii)  Shear deformation and rotatory inertia effects are  

negligible. 
Since all the spans of the bridge are of the same length, one 
typical span of the bridge is considered for analysis. Rayleigh 
method has been used to obtain the frequencies of the bridge. 
The co-ordinates for a typical bridge span are selected and the 
mode shapes assumed for the first two modes of vibration are 
depicted. 

 
For each segment, an assumed deflection profile of the form is  
     y(x) = A1 cos kx + B2 sin kx + Cx + D          (1)  
The various constants A, B, C, D are selected so as to satisfy 
the conditions at the joints. The torsional modes have again 
been analysed using the energy method. It is assumed that the 
piers and towers do not deform when the deck undergoes 
twisting deformation about a longitudinal axis.  Under this 
assumption, it is adequate to consider strain and kinetic 
energies in the deck and in the cable systems. Let θ0 (x) 
represent the amplitude of rotation at any point in the deck. 
Then, maximum strain energy in the deck is  

�� � ��
� � �	
�

	� � ���
�                        (2) 

where GJ represents the torsional rigidity of the deck, l = half 
the span of the main deck, 
Maximum Strain energy in the cables is  

� � 2 �
� ∑ ����

��
 cos� �� ���!"�#�$�                       (3) 

Where 2s the distance between two parallel sets of cables on 
the other side of the deck and 
θok the amplitude of rotation at the kth cable. 
Total maximum strain energy V = Vs  +  Vc 
Maximum kinetic energy in the deck: 

% � &�
'(
� � ������

�           (4) 

�� �" � )� sin �,�
��  - )# sin �#,�

��                     (5) 
shear centre and γ is the mass of deck material per unit 
volume. The torsional frequencies can now be obtained from 
the condition δ(V-T) = 0. The shape function θ0 (x) is now 
expressed as, 
This expression satisfies the condition that the rotation of the 
cross section is zero at the supports. By means of the 
Rayleigh-Ritz procedure, the frequencies turn out to be: 
 First symmetric mode : 1.19 Hz 

Second symmetric mode : 1.69 Hz 

Cable stays: High fatigue resistant DINA (Brand name of M/s 
BBR product) cables are considered in this bridge. The length 
of the cables varies from 37 m to 113 m and the number of 7 
mm dia. HT wires in each stay cable varies from 96 to 264. 
The ultimate tensile strength (UTS) of HT wires is taken up to 
1570N/mm 2   and the required fatigue stress is 180 N/mm 2    
with an upper limit of 0.45 UTS. These cables are designed to 
carry ultimate tensile forces in the range of 5,800 kN to 
15,950kN. Frequency of cables was calculated and given in  

Table.1. 

Cab l
e No.  

D ia  
(mm)  

Length  
(m)  

Tens io
n  (kN)  

Frequency 
(Hz)  

Ve loc i t
y  (m/ s)  

1 .  76 55 .16 1890 2 .50 2 .100 
2 .  78 57 .73 1970 2 .20 1 .900 

3  82 61 .03 2153 1 .95 1 .750 

4 .  85 65 .27 2370 1 .80 1 .600 

5 .  90 69 .30 2630 1 .70 1 .400 

6 .  96 76 .23 3140 1 .55 1 .250 
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The two-dimensional equations of motion for an 
airfoil are 

                                                   
       

 
 
 
 
 

(6) 
                                              

In the present case, torsion - bending flutter of the 

bridge was considered for the two dimensional 

section.            The flutter determinant                             

was solved by Theodorsen’s method 

Where,  
 
 
 
 
 
 
 
 
 
 
 
Let real and imaginary roots were plotted Vs l /k. It was seen 
that the real and imaginary equations were both satisfied at the 
intersection of the curves when l/k=6.05 and √x = 1.1425 
Hence, the corresponding critical flutter speed 
 

 
Buffeting 
 
Equations of motion for a two-dimensional section of the 
bridge under buffeting excitation may be generalized from eqs. 
(7) And (8) by adding time-dependent buffeting lift and 
moment per unit span, respectively, as follows: 

                                                                             (7) 
 
                                                                              (8) 
where cL (s) and cM (s) are time-dependent lift and moment 
coefficients and  v is the mean wind velocity. 
The span-wise integrals, namely CL(s), CM(s): 
 
                                                                            (9) 
 

               ./ !" � �
01

� 2/ �, !" ��01
�                (10) 

 
The equation for single-degree vertical motion with 4 � 5

6 7! 

4 ′′ - 289:94 ′:9�4 � ;6(
< =:>�?@4 ′ - .0 !"@        (11) 

 
Or in adjusted notation 
                                                                              (12) 

 

Where                                                                   (13) 

 
CL(s) is stationary random, of power spectral density (K), and 
the definition is introduced: 
 
 
                                                                             (14) 
 

 

 

Then the power spectral density of ξ is given by 
 

                                                                            (15) 

 
 
Since        is experimentally obtainable from the 
ratio                , it is then possible to solve this for 
the value of γ1, and hence        (K) as in eq. (11). 

 
An alternative approach, if CL(s) is not steady but a 

transient (decaying or divergent) one, is to employ 
Fourier transforms              respectively of a selected 
portion of the motion ξ and input CL(s), hence:  

 % 7:" � 4/.0 
 
The non-dimensional dynamic equation for span wise section x 
of the full bridge is  
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where all K parameters are based on mean wind velocity  
v, cM (x,s)  the local randomly varying moment coefficient . 
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Unlike the flutter phenomenon, where the entire system acts 
concertedly at a single value of K = Kc, gust response occurs in 
several simultaneous modes 
ψi (x) each of which having a specifiable value K = K i.   

Assuming that                      ψi 2 (x) dx  =  I 
 
 
The equation pertaining to mode i of the bridge becomes. 
  
 
 
 
 
                                                                             (17) 
The problem then devolves into determining the random force 
in eqn. (16) and its consequences and becomes.   
 
 
                                                                             (18) 
The spectrum of the amplitude of response ηi for the ith mode 
ψi (x) is then given by 
 
where,  
 
 
                                                                           (19) 
 
 
             
                                                                          (20) 
and β* (xq, K) is its complex conjugate. 
 
Since the sum of all modal responses constitutes the total 
responseθ, it is then necessary to assess Sθ (x, K) of θ (x) for 
all modal contributions at the given span-wise point x, to take 
into account all modal and cross-modal contributions. But it is 
likely for this fairly lowly-damped case that a good estimate 
can be made by taking the sum as squared modal contributions  
 
                                                                         (21) 
which then constitutes the result for the spectrum of response.  
Other details on estimated maximum of response, number of 
deflection excursions contributing to fatigue, etc. can be 

pursued by known techniques.  From the equations 7 to 21, it is 
possible to predict the buffeting response of a bridge 
analytically. 
 

IV. EXPERIMENTAL INVESTIGATIONS 
 
A model was built to a scale of 1:200 representing a 

240 m length of the bridge span. Well-seasoned teakwood was 
used to fabricate the model. Various components of the model, 
such as the main girder, longitudinal beam, cross beam, deck 
slab, foot path, hand railing, camber and fillet were all 
fabricated separately and carefully assembled to get the replica 
of the prototype. Two designs for the hand railings, one with 
an ornamental design and the other, a plain design fabricated 
using angle iron, are investigated. The important physical 
properties and dimensions of the model and were shown in 
Table 2. The ratio of flexural to torsional frequency (Nθ/ Nz) 
equals to 1.2 is maintained by adjusting the frequency of 
oscillation of the model with some limitations. The frequency 
and amplitude of oscillations were measured by means of 
accelerometers with preamplifier. The model frequencies and 
its damping were measured by giving an impulse and also by 
using an electro-dynamic shaker.  

 
Damping was measured by giving an impulse 

disturbance to the model and recording the decaying signal to 
arrive at the logarithmic decrement. Freeman, Fox and 
Partners (designers of the bridge) had specified a damping 
value  δs of 0.06 in both bending and torsion and a value close 
to this was obtained in flexure by adjusting the size of damper 
disc. The location of the damper disc on the longitudinal bar 
was then adjusted to obtain a torsional damping of nearly 0.06. 
A number of tests were conducted even at this lower value of 
damping i.e 0.03, as some bridges are known to possess such 
low values of damping.  

Measurements were made for vertical and torsional 
oscillations with and without live loads for the damping values 
of 0.06 and 0.03 at positive and negative angles of attack 
ranging from 0 to 7.5 degrees at intervals of 2.5 degrees. In the 
present investigation, a distinct single degree of freedom 
oscillation in the rolling mode has also been consistently 
observed. In configurations where torsional oscillation 
occurred, the rolling mode of instability was seen to occur 
almost immediately. The rolling mode of instability seen in 
sectional model tests may be described as due to the overtone 
flexural oscillation of the main span of the bridge. 
 

Table. 2 
S
N
o 

Property Scale 
Rat io  

Model 
Value 

Ful l  
Scale 
Value 

1 Width  1 :100 0.11m 10.54m 
2 Ef fect i ve 

area o f  cross 
sect ion  

1 :1002 5 .86X10 - 4 
m2 

5 .865 m2 

3  Locat ion o f  
the Neutral  
Ax is below 

1:100 0.5135 cm 51.35 cm 
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top o f the 
deck 

4  Shear  center  
above top o f 
the deck 

1 :100 0.874 cm 87.4 cm 

5 Weight  per  
un i t  length  

1 :1002 2 .5  kg/m 25040 
kg/m 

6 Mass 
moment  o f 
iner t ia per  
un i t  length  

1 :1004 0 .0025 
kgm2/m 

253600kg
m2/m  

7 Frequency o f 
Osci l l a t ion:  
a) Vert ical  

mot ion  
b) Torsiona

l  

 
6 :1  
6 :1  

 
6 .0  Hz 
7 .2  Hz 

 
1 .00 Hz 
1 .19 Hz 

8  N θ /N z 1 :1  1 .2  1 .2  

 
V. RESULTS AND DISCUSSIONS 

 
From the results of wind tunnel tests on the sectional model 
with various configurations, it is evident that corresponding 
full-scale values can be obtained by applying appropriate scale 
factors. With regard to the two flexural modes, the second 
flexural mode of 1.07 Hz was considered along with the 
torsional mode of 1.20 Hz to get the lowest value of Nθ/Nz for 
model simulation. However, since the oscillations of the 
model were uncoupled, oscillation in each of those modes had 
to be interpreted independently. The basic model, without any 
modifications, vibrates with a maximum amplitude of 1.61 
mm and with a wind speed of 15.5 m/s, the value of  δzx  was 
0.03 with angle iron hand railing. The central amplitude for 
the full-scale bridge turns out to be 64.4 mm. This amplitude 
in the full-scale structure occurring at a speed of 50 m/s is 
seen to be fairly large and remedial measures to reduce this 
amplitude would become inevitable. When the hand-railing is 
of the ornamental type, the model vibrates with more or less 
the same amplitude. The speed range for instability is also 
approximately the same. With the introduction of dashpots, 
the value of δ zx is raised to 0.06 and the maximum amplitude 
of the model with angle iron hand railing is brought down by 
about 40 percent. The vibration of the model with ornamental 
hand-railing is insignificant by the introduction of dashpots. 

It is seen that a positive angle of attack leads to 
slightly increased amplitude of oscillation, the speed range for 
instability being essentially unaffected. With a negative angle 
of attack the amplitude is reduced significantly and the speed 
for the inception of instability is also higher by about 40 
percent. Maximum amplitude of 1.97 mm was observed for 
the model with ornamental hand railing when the truck 
convoys were moving in the same direction on the leeward 
side and at 0.25 m from the centre. For the angle iron hand 
railing, the maximum amplitude was 0.82 mm, when the truck 
convoy was moving in the same direction, very close to the 
centre, on the windward side. The ranges of wind speed for 
instability in vertical motion were not affected by the presence 

of tank or truck as live loads. It is the amplitude of oscillation, 
which tended to be much more pronounced. 

The wind tunnel tests showed that the sectional 
model of the bridge oscillated in the torsional mode as the 
wind speed was increased beyond the range for instability in 
vertical motion. The sectional model with ornamental hand 
railing showed instability in torsion between wind speeds of 
30 m/s to 35 m/s. The maximum amplitude observed was 0.90, 
when δθs was 0.03. There was a slight reduction in the 
amplitude; the value of δθs was raised to 0.06. With the 
introduction of the tank live load on the model with 
ornamental hand railing, the torsional amplitudes were 
pronounced. The maximum amplitude of 1.5o occurred when 
the tank was on the windward side and 0.5 m from the centre. 
The smallest amplitude was 0.95o and was realized with the 
tank on the leeward side and close to the centre. When the 
hand railing was of the angle iron type, it did not record in any 
measurable torsion. The maximum amplitude for this case was 
as small as 0.10 when the tank was located on the windward 
side at 0.5 m from the centre.  

As the wind speed was increased beyond the range of 
torsional instability, it was found that the model was soon 
oscillating in the rolling mode. For the bare model with 
ornamental hand railing, the rolling oscillations started when 
the wind speed was 30 m/s and continued upto a wind speed 
of 40 m/s. The maximum rolling amplitude was 0.04°. With 
the introduction of dashpots, the maximum amplitude for both 
the types of hand railing was 0.02°. At a positive angle of 
attack of 10°, the rolling amplitude was 0.04° for the model 
with ornamental hand railing and dashpots. With the angle of 
attack at -10°, the amplitude came down to 0.02° and speed 
for the onset of instability raised by about 20 percent. 
 

VI. CONCLUSIONS 
 
The following conclusions are arrived at from the present 
study: 
1).From the results of the flutter test on the bridge model, it is 
observed that the model showed oscillation mainly in the 
bending mode and relatively weaker in the torsional mode. 
The oscillation tended to be larger at positive angles of attack 
and smaller at negative angles of attack, without any 
significant effect on the critical speed of the wind. 
2). The bridge deck is more susceptible to wind excited 
oscillations of high amplitudes under live loads. It is also 
observed that a rolling mode of instability occurs for long span 
cable stayed bridges. Further, coverage of the bottom of the 
deck proved to be the most effective modification in 
increasing the stability of the bridge in bending and rolling.  
3). While recording buffeting response of the bridge, it is 
observed that the torsional instability of a bridge is not 
affected by moderate turbulence. It is also observed that the 
component of wind, normal to the deck, governs the torsional 
instability and buffeting behaviour for the yawed wind attack.  
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