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Abstract- As the number of transistorsthat are integrated onto a
silicon die continues to increase, the compute power is becoming
a commodity. This has enabled a whole host of new applications
that rely on high-throughput computations. Recently, the need
for faster and cost-effective applications in form-factor
constrained environments has driven an interest in on-chip
acceleration of algorithms based on Monte Carlo simulations.
This paper presents a compute architecture for accelerating
Monte Carlo simulations based on the Network-on-Chip
paradigm for on-chip communication. We demonstrate through
the complete implementation of a Monte Carlo-based image
reconstruction algorithm for Single-Photon Emission Computed
Tomography (SPECT) image that this complex problem can be
accelerated by two orders of magnitude on even a modestly sized
FPGA. The architecture and the methodology that we present in
this paper is modular and hence it is scalable to problem
instances of different sizes, with application to other domains
that rely on Monte Carlo simulations.

Keywords- Networ k-on-chip (NoC), field-programmable
gate-array (FPGA), Monte Carlo (M C) simulation, SPECT
I mage.

I.INTRODUCTION

SINGLE-PHOTON Emission Computed Tomography
(SPECT) is a medical imaging modality used clificah a
number of diagnostic applications, including detectof
cardiac pathology, various forms of cancer, andtager
degenerative brain diseases. Consequently, timehgd a
accurate reconstruction of SPECT images is of caliti
importance. Although computationally efficient aytaal
solutions to this extremely complex problem do gxtey are
highly susceptible to noise and since image quélity direct
implications to patient care, statistical reconsinn methods
are typically favored despite their relatively lomgntimes.

The last decade has seen the development of numerou

variance reduction techniques (VRTS) which accédethese

statistical reconstruction methods by optimizing e th
algorithms of the Monte Carlo (MC) simulations lagit core.

These have been quite successful in bringing
reconstruction time into a reasonable range fatixadly small
images. However, because of the underlying stractfirMC
simulations, we propose that by investigating sohg in
parallel computing, images of higher. resolutionn che
reconstructed without paying a very costly time npitem.
Naturally, such a parallel solution could also eipkhese
VRTs That
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parallelization is quite intuitive, as fundamentathey are
comprised of huge numbers of independent expersnent

This application falls into a class of Monte Caslmulations
in which all the experiments share data from a commata
set which is sufficiently large to prohibit commet
reproduction for each processing node. Furthermaresuch
experiments, the data access patterns are not kaopiori.
Other examples from this class include weather,
environmental, and risk evaluation simulations. sT paper
clearly details an insightful and well-executed lempentation
and the results are very promising In this papenatular
approach that can be reused in other applicationaitts to
ease the design effort.

II. IMAGE RECONSTRUCTION ALGORITHM
This section presents the concepts used for image

reconstruction in nuclear medical imaging and hgltts the
algorithmic patterns that have motivated this dectural

decisions.
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Fig 1 Simulation of Imaging
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The physical basis for SPECT imaging is the detectf
gamma rays emitted by decaying isotopes, which Heeen
injected into a subject. Prior to detection, thgaenma rays
may undergo attenuation and a series of scattedngtheir
course of exit from the patient. This makes deteatidn of
the variable of interest namely the distribution tife
radioactive source within the patient nontrivial.
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Fig 2 Iterative Reconstruction

The focus of this work is the accelerated simutatid this
imaging process (see Fig. 1) using Monte Carlo ough
since this simulation is in the inner loop of agrof iterative
reconstruction algorithms depicted in Fig. 2. lbslkl be noted
that the actual iterative refinement for image restouction is
not addressed explicitly by this work. Fig. 1 depithe
simulation of the imaging process. The patient dgrssan is
obtained with a SPECT scanner of the source digdtdb to
simulate the imaging process. These simulated image
compared to the measured images and used to \itdyati
refine the approximation of the source distributgsnshown in
Fig. 2.

I1l. NOC BASED PPARALLEL ARCHITECTURE

In this section, we detail our new architecturedocelerating
Monte Carlo simulations. First, we describe thehaecture
and then we provide implementation details for gmechip
network and processing units illustrated in Fig.TBe most
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significant innovation presented in this work iseth
investigation into a general, scalable architectiore Monte
Carlo simulations in which all the experiments ghardata set
which is too large to replicate for each processinig—in this
case, the density map. The natural problem whidesin this
situation is how to arbitrate access between thedfads of
PUs and the single copy of the data set so thah eac
experiment can continue without being data starddtthough

it is possible to position the data set centraliy arbitrate
access to it, this comes at the price of highea thency. This
can be hidden to some extent by keeping many cosur
experiments at each PU but in such a data-ceninalation,
the hardware and time cost of such frequent coseikthing
could become prohibitive. Consequently, we inveddd a
NoC-based architecture that enabled distributirey dhta set
among the processing units and implementing on-chip
communication resources sufficient for each expenimto
relocate itself to the PU containing the dataetds. This
section describes the design process that wasvetipwhile
giving concrete details of the final implementation many
cases, experimental profiling is used to justifydasign
decision. It represents the network as a graph partbrms
cycle-accurate simulation of all network transfers
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Figure 3. Top Layer of the Network

with user-defined functions generating and procesdhe
network traffic. Though there are a number of satoids
available for exploration of the NoC design spaee chose to
design our own because it allowed us to easilyrjpmate our
specific application into the network simulationhi§ was
important, first because the network traffic isfidiflt to
model since it is heavily instance dependant amg¢é@ much
more accurate analysis of the network performanas w
possible by simulating the network in the contett tioe
application than would have been using a genemdfidr
model. Furthermore, because the simulator intedratth our
application, it was useful not only as a designl@gtion tool
but also as an effective debugging tool. The sfzbie design
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meant that it was infeasible to perform completacfional
hardware simulation for any more than a few midsads.
However, our network simulator was designed torfate
seamlessly with the hardware simulation through Btrect
Programming Interface offered by Verilog. Consedlyen
after the hardware design of the network was fonetily
verified, while debugging the interaction betweengessing
units the network transfers could be offloaded o retwork
simulator to be executed at a higher level and &emach
more quickly.

A.switching and routing policies

The size of the network again had significant

influence on the decision for the routing and shiitg
strategies that were selected. The following waeedriteria,
in order of importance:

1. No data may be lost, i.e., no packets should be
dropped,

2. The network should employ a deadlock free rgutin
strategy,

3. The switching strategy should be simple to allow
switches to be built with minimal resources, and

4. The average latency per transfer should be ai sm
as possible.

B.Switch Structure

The packet switches are a registered set of inprs pvith a
number of arbitrated paths to the output portstsPame 10 bits
wide—38 data bits, 1 bit to indicate if a flit islicaor junk and
1 bit for flow control. In addition, there is 1 énfrom each
input port to its feeding output port to indicatecket arrival
(discussed at the end of this section). The purpiséhe

arbitration logic is to assign one, and only ongpat port for
as many input ports as possible on each clock cylerder
to minimize the hardware cost of the arbitrationt tand

output ports, while still implementing the desireduting

strategy, limited path switches were constructeg. & hows
the possible paths a packet can take through atswit
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Fig. 4. Wormhole switching

Packets from the PU can enter the network in angction
and naturally a packet arriving on any input podni the
network can be directed out to the PU. As indicatiedve, the
Z direction is routed first and as a result, ondkets directly
from the PU can exit the Z output port of a swit€mce the
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photon has reached its correct Z address, it mist ¢he XY
plane in the correct direction. A packet may onlgke one
right turn after entering the XY plane. For examjfii@ packet
must move in the positive X direction and the negaty
direction, it must select the negative Y directifinst. This
facilitates deadlock-free routing with an extremedynple
arbitration unit. Once an input port has been digdo an
output port, it locks that port until the entire chat is
transmitted indicated by the arrival of the footer.
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Fig. 5. Modified wormhole switching.

arrived-

unraulad inpul ports
are slaled

To demonstrate how this process occurs, part ofiitchs is
shown in Fig. 5, with the full implementation beigien in
Fig. 6. If an output port is unlocked and two orrenénput
ports compete for simultaneous access to it, thigament is
made with the following priority:

1. Straight-through traffic (S),
2. Other in-plane traffic (T),
3. Out-of-plane traffic (2),

4. Processing unit (P).

Input ports which are not assigned are stalled thaidesired
output port opens. The mechanism for this stallimgrery
similar to the strategy employed by wormhole rogitiim

which each input port of a switch has two or mdits fof

storage. If there is a contention for an output,pibre lower
priority packet buffers into the storage on theuinport and
when that buffer has only one space remainingalassgnal is
propagated back to the switch that is feeding that

input port as in Fig. 4.

Obviously, with a deeper buffer, the stalled paskiitoccupy
less space in the actual network. This is an exdhgeffective
low-resource switching method; however, the buffarst be
at least two levels deep to give the stall signelbak cycle to
propagate back to the previous switch. Unfortuyatéiere
were insufficient resources on chip to provide twdfers for
every input port, so a slightly different approashs taken
(see Fig. 5). Only one level of input bufferingaltocated and
if a header arrives in that buffer that cannot beted, the
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input port is disabled. This causes dropping ofigey flits to

occur. To resolve this, the packets are transmitigdically

from the source PU. Once a packet has locked a tpathe

destination node, it propagates an arrival sigraadkbto the
source, which then transmits the remainder of #eket with
a marker in the footer to allow the receiver tglthe packet.
Naturally, this cyclic transmission results in exmnetwork
transfers. Although this can waste some cycleswnsource
PU’s network controller, network throughput is megatively
impacted since these redundant flits are in a qoraf the
network that is locked to any other traffic andfact, the
blocking of the network controller actually turnstdo be a
very effective and simple way to limit network castjon.

C. Processing Unit Structure

Based on our choice for the implementation platfamore
than 40 percent of the device’s logic resourcesswensumed
by the on-chip network. This motivated a PU dedigat is
cost effective without impacting the accuracy & thsults.
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Fig. 6. Routing configuration in a switch.

The ratio of trigonometric calculation® those
detailed above is relatively low, yet a trig urst rielatively
expensive in terms of hardware resources. Consdguéme
decision was made to share a single trigonometity among
an entire column of PUs (1 trig processor per 8)PUse trig
unit is based on the well-documented CORDIC alpariand
the
Arbitration is performed on a first-come-first-sedvbasis and
each CORDIC unit has one level of input bufferir@ur
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implementation was based heavily on the work

profiling reveals that only 0.0027 percent of CORDI
commands arrive at a full CORDIC unit and needadoacked
up into the network and hence we conclude thattheds are
not bottlenecks to computation. Each processingnerig also
equipped with an linear-feedback shift register SBJ for
pseudorandom number generation, where each unit
selectively seeded for diversity. We readily ackteage that
other methods for random number generation withtebet
statistical properties do exist, however, our choiwas
motivated by the very tight resource constraints tls
application and with the understanding that theu$oof this
work is on the communication infrastructure

is

required significant experimental profiling. Itdsitical in this
application to preserve the accuracy of the recoosd
image, yet this must be balanced with the tightouese
constraints. The resources required to implemegustom
floating-point data path at each PU would dradfjdahit

the number of PUs and hence the possible paratielis
Therefore, the application was mapped into fixedypo
arithmetic but the evaluation of the impact of tinprecision
on the quality of the reconstructed image is cooapdid by the
random nature of the simulation. To overcome thisyofold
approach was taken to establish the appropriatewddths: in
the first phase, the experiments were evaluatedichdally to
understand the relative impact on accuracy of @aciable. In
the second phase, the experiments were evaluatetthein
context of the simulation.

The sigtalnoise ratio (SNR) of
the fixed-point images taking the floating-pointages as
reference is insufficient to draw strong conclusi@bout the
accuracy because of the simulation randomness aodube
the images are so heavily dependent on the sirooldfta set.
Consequently, the convergence of the images witte&sing
simulation size was used to evaluate the simulatturacy .

IVRESULTS

This paper has the detailed implementation ofdware for
the simulation of SPECT imaging based on the M@#do
simulation.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a NOC based elarall
architecture, and its FPGA implementation, for ésreging
Monte Carlo simulations that share common data. Séie
case study on SPECT imaging has shown that signific
speedups can be achieved over single core impleim,
without compromising the image reconstruction aacyr The
proposed architecture, because it is based on a@ No
approach, is modular and hence it can easily bareiqd to
support FPGAs of larger capacity.
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