

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1, Issue 5, May2014)

1

PERFORMANCE-EFFICIENT DATA
SYNCHRONIZATION ARCHITECTURE FOR

MULTI-CORE SYSTEMS USING C-LOCK

Aswathy Surendran
The Oxford College of Engineering, Bangalore

aswathysurendran4u@gmail.com

Abstract: Data synchronization among multiple cores has been
one of the critical issues which must be resolved in order to
optimize the parallelism of Multi-core architectures. Data
synchronization schemes can be classified as lock-based methods
and lock-free methods. However, none of these methods consider
the nature of embedded systems which have demanding and
sometimes conflicting requirements not only for high
performance but also for low power consumption. As an answer
to these problems, here proposes C-Lock, an energy- and
performance-efficient data synchronization method for Multi-
core embedded systems. C-Lock achieves balanced energy- and
performance-efficiency by combining the advantages of lock-
based methods and transactional memory (TM) approaches; in
C-Lock, the core is blocked only when true conflicts exist
(advantage of TM), while avoiding roll-back operations which
can cause huge overhead with regard to both performance and
energy (advantage of locks). Also, in order to save more energy,
C-Lock disables the clocks of the cores which are blocked for the
access to the shared data until the shared data become available.

1. INTRODUCTION

 In modern computer systems multiple core systems have
become prevalent, not only for high performance desktops or
servers but also for many application such as mobile devices.
Multi-core means single computing component with 2 or more
independent actual cpu’s (called cores), that read execute
program instructions. The instructions are ordinary CPU
instructions such as add, move data etc., but the multiple cores
can run multiple instructions at the same time, increasing
overall speed for programs .Multi-core can run multiple
instructions simultaneously.
 In order to meet the increasing demands for
higher performance, increasing CPU clock frequency was one
of the most obvious methods in traditional processors.
However, for single cores, this is turning out to be impractical
due to prohibitive power and heat dissipation requirements.
This limitation made the multi-core approach a more viable
and scalable solution to the performance demands of
embedded systems. In fact, contemporary embedded systems,
especially high-end products such as

smartphones, are rapidly adopting multi-core chips at their
core. Nowadays data synchronization among multi-core A
system is a critical issue. It must be resolved in order to
optimize the parallelism. The data synchronization issue
comes into picture when two or more processors are trying to
access any shared data simultaneously.
 Present data synchronization methods can be classified
as either lock-based or lock-free. The former includes locks,
semaphores, and barriers; it blocks the accesses to the shared
data from the processors which fail to acquire the permission.
The latter allow all processors to access the shared data in an
optimistic manner, and then perform rollback and re-execution
when a conflict occurs.

 But there are some drawbacks associated with
these methods. Lock based methods are widely used because
of their simple control mechanism, but they sacrifice much
parallelism, which results in poor performance. Lock- free
methods such as Transactional Memory approach perform
speculative execution which might turn out to be wasteful of
energy when the execution must be rolled back. In such
cases, the rollback operation consumes additional energy.
Here proposing a novel solution to this problem- C-Lock, an
energy- and performance-efficient data synchronization
method for embedded systems. C-Lock delivers TM-like
parallelism in race conditions by detecting true data conflicts.
The domain area here is System-on- Chip (SOC). SoC is an
integrated circuit that integrates all components of a
computer or other electronic system into a single chip.

2. MOTIVATIONAL EXAMPLES

 2.1 Transactional Memory Approach
 It is providing enough programmability to the
programmers. Transactions suffer from interference and it
makes to abort and from heavy overheads for memory access.
In terms of energy consumption, transactional memory (TM)
is better than Lock based method. But it is majorly influenced
by the architecture of the system. Ferry[8] called the hardware
TM as embedded TM. It is characterized by energy efficiency
and simplicity. Accuracy of speculation is more affected by
energy efficiency. If speculation is wrong, then non-negligible
energy consumption will be the result. To overcome this

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1, Issue 5, May2014)

2

hurdle, a method called shut down method is proposed. In this
method, when any transaction running is aborted, it turns off
the processor. It is done by gating all its clocks.
2.2 Lock based Approach
 Speculation Lock Elision (SLE) [6] is a hardware based
approach. It is a technique to remove dynamically unnecessary
lock induced serialization. It enables highly concurrent
execution of multiple threads. Whenever the data conflicts
happen, to acquire the lock the corresponding threads are
restarted.
 Transactional Lock Removal also uses hardware in the
conversion from lock based critical sections into lock free
optimistic transactions. It makes use of time stamps for
resolving conflicts. Its advantages are improved
programmability, performance and high stability.
2.3 Hybrid Approach
 By combining the advantages of Lock and TM, another
approach can be introduced, called Hybrid Approach. One
method belongs to this approach is Adaptive Locks [9]. For
better performance, it dynamically selects lock method or
transactional memory approach. The main focus of adaptive
lock is on improving program execution time. Additional
adaptive logic is needed for introducing these adaptive locks.
Major drawback of this approach is, it is not having any power
saving mechanism.
 In summary, we can say that TM[7] Methods are not
well designed from energy perspective. On the same way
traditional lock schemes are inadequate from a performance
perspective. So it necessitates the need of a novel approach for
data synchronization which combines the advantages of all the
above approaches, i.e. C-Lock (Core-Lock). But C-Lock is
having a unique approach i.e. normally behaves like lock
scheme for energy efficiency, but it shows a transactional
behavior for checking data conflicts. It does clock-gating the
stalls for power saving.

3 CORE LOCK (C- Lock)

 The data synchronization issue arises when two or
more processors access any shared data simultaneously.
Mishandling of these conflicts results in incorrect operations
and cause fatal errors. Some problems occurred are:
Communication overhead, Performance overhead, Power
consumption issues etc. In the burst waited stage the
requesting processors are tied up sending out polling
messages. Additional contention may lead to deadlock
conditions that require extra mechanism for deadlock
prevention which further degrade system performance. Until
the request is obtained the requesting processors need to
continuously place the lock requests on the system bus. In a
shared memory multi-processor with spin lock
synchronization, the no. of synchronization requests grows
nonlinearly with no. of contending process making the system
not scalable.

 As an answer to these data synchronization problems,
here proposing a new approach called C-Lock (Core Lock). It
is a new performance -efficient data synchronization method
for multi-core embedded systems. It achieves balanced
energy- and performance-efficiency. The main idea of the C-
Lock system is to exploit available parallelism with true
conflict detection and to minimize dynamic power
consumption with clock gating for the idle cores. It combines
the advantages of both lock-based methods and transactional
memory approaches. It delivers TM-like parallelism in race
conditions by detecting true data conflicts. The detection is
done by considering the type, address range, and dependency
of simultaneous accesses. In those cases when true data
conflicts are detected, the cores which are not given
permission to access the data are immediately clock-gated in
order to minimize the dynamic power consumption. Since no
speculative execution and rollback are performed, C-Lock [1]
results in higher energy efficiency than TM. Also, due to the
immediate clock-gating of cores, C-Lock can consume less
energy than lock-based methods.
 FSM (Finite State Machine) logic is associated with
each core. The Clock performance can be enhanced with the
finite state machine logic. This Finite State Machine
associated with each core will control the current and next
states of cores to enable write / read transaction over shared
memory. The formal model of a communicating finite state
machine plays an important role in three different areas of p
design: formal validation, protocol synthesis, and
conformance testing. A finite-state machine, or FSM[4],[5] for
short, is a model of computation based on a hypothetical
machine made of one or more states. Only a single state can be
active at the same time, so the machine must transition from
one state to another in order to perform different actions.
FSMs are commonly used to organize and represent an
execution flow. Basically a FSM consists of combinational,
sequential and output logic. Combinational logic is used to
decide the next state of the FSM; sequential logic is used to
store the current state of the FSM. The output logic is a
mixture of both combinational and sequential logic. It is a
mathematical model of computation used to design
both computer programs and sequential logic circuits. It is
conceived as an abstract machine that can be in one of a finite
number of states. The machine is in only one state at a time;
the state it is in at any given time is called the current state. It
can change from one state to another when initiated by a
triggering event or condition; this is called a transition. A
particular FSM is defined by a list of its states, and the
triggering condition for each transition.
 The main idea of the C-Lock system is to exploit available
parallelism with true conflict detection and to minimize
dynamic power consumption with clock gating for the idle
cores. Before the execution of the critical section, every core
sends the address range to be accessed. After that, the
centralized peripheral C-Lock Manager decides whether the
ranges overlap or not. If there is an overlap, only one among

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1, Issue 5, May2014)

3

the cores that cause conflict is permitted to run while the
others are stalled with clockgating until the former ends the
execution.

Fig. 1 Top Level Architecture

 The major modification from the traditional

lock schemes is that, on the hardware side, an additional
peripheral called Finite State Machine (FSM) is added to
each core. It helps in greater controllability over
synchronization. The Clock performance can be enhanced
with the finite state machine logic. FSM for each core will
control the current and next states of cores to enable write /
read transaction over shared memory.

There are two types of state machines.1) Mealy State
Machine 2) Moore State Machine. A Moore FSM is a state
machine where the outputs are only a function of the present
state. A Mealy FSM is a state machine where one or more of
the outputs is a function of the present state and one or more
of the inputs.

Fig. 2 Block Diagram

Fig. 3 Simple model of FSM

Fig. 4 State Diagram of FSM

The simple model and state diagram of FSM are given in
figure. A finite state machine contains a finite number of states
and produces outputs on state transitions after receiving
inputs. Finite state machines are widely used to model systems
in diverse areas, including sequential circuits, certain types of
programs, and, more recently, communication protocols.
 C-Lock Manager is the key component of C-Lock which
is in charge of detecting true conflicts among the accesses to
the shared data, and controlling clock-gating of the cores.
Each core is in charge of setting the necessary information to
C-Lock Manager, which includes base address, size, and type
of the data it intends to access. When this information is set,
the core is allowed to attempt its atomic operation by notifying
C-Lock Manager. In the next step, C-Lock Manager initiates
the conflict detection routine and, in case of a conflict, grants
permission to only one of the cores while gating the other
cores which intend to access the data. Note that multiple cores
can get the permissions if the accesses are not involved in any
true conflict. After the core which has obtained the permission
completes its atomic access, it notifies C-Lock Manager to
release the permission. This command also triggers C-Lock
Manager’s conflict detection routine. C-Lock Manager gives
permission to another core by de-asserting the corresponding
clock gating signal.
 Assume that there are N cores in the processor, and that
each core can store M Items with C-LockManager. Item is a
storage that contains information for checking true conflicts
with the accesses of other cores. One Item consists of the
following fields:

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1, Issue 5, May2014)

4

• BaseAddr: base address
• Size: access size
• R/W: read/write
• gIdx : global index for conflict detection
• V: one bit valid field for indication of the validity of Item

Fig. 5 Concept of C-Lock Mechanism

 The internal architecture of C-Lock Manager is shown
in Fig. It is composed of N Pools, M Item busses, a global
counter, an arbiter, and a couple of signals among the Pools
for the purpose of detecting conflicts (signals for requesting
conflict check to the other Pools, and for responding to the
requests). True conflicts occur
If the following conditions are simultaneously present: Both
Items are valid, their address ranges overlap, At least one of
them is a write operation.

Fig. 6 C-Lock Manager Internal Architecture

4 CORE-LOCKS MANAGER- OPERATION

Fig.7 Pool Architecture

Pool is the main part of C-Lock Manager: It consists of M
Item entries and conflict checker and clock-gating logics.
Architecture each of Pool is shown in Fig. 6. Each Core
initiates the C-Lock operation by recording the access
information to the corresponding Pool .Each core can register
at most M Items. Here the handling logic of Pool manages the
status of the entries by checking the valid fields thus put the
incoming Item to an empty entry. Therefore, the program does
not need to identify which Item entry it is accessing.
 The access is triggered when the core sends the begin
command to the corresponding Pool through the bus. Then,
from the arbiter the Pool requests a grant to the conflict
checking operation. This procedure is necessary since multiple
cores can trigger their atomic accesses at the same time if C-
Lock Manager is connected via multiple buses. If the Pool
gets the grant, it sets the gIdx fields of the newly registered
Item entries to the current global index values which is
broadcasted by the global counter and the granted Pool signals
the global counter to increment the global index value
simultaneously. After that, the Pool broadcasts all the M Items
to the item buses and requests the other Pools to check for
conflicts by comparing the broadcasted Items and their own
registered Items. Immediately after, the conflict checking
process is done in the other Pools. The major part of this
process is done by the conflict checker. A conflict checker is
dedicated to an Item entry and checks whether any of the M
broadcasted Items causes true conflicts with its own Item. True
conflicts is detected when both Items are valid, when their
address ranges overlap and there should be at least one of
them is a write operation.

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1, Issue 5, May2014)

5

 Each conflict checker performs these operation for all
the broadcasted Items and finally produces out the conflict
signal by simply ORing the results. By ORing all the conflict
signals from the conflict checkers again, the Pool finally
makes the signal which indicates whether any of the
broadcasted Items are in conflict with the Items in this Pool.
The signal is ANDed with the arb_decision signal to output
the final conflict_out signal.
 Then, the Pool which requested conflict checks from the
other Pools collects the results by noticing the conflict_in
signals. If any of the other Pools shows conflict, it means the
requested atomic access cannot be triggered at this time, and
therefore, the Pool disables the clock of the corresponding
core. And, the conflict_in signals are stored in the who
blocked me register. So Pool can watch the events of the
blocking Pools being cleared and retry its access. This can
surely avoid the blocked Pools watching the activities from all
the other cores. When no conflicts are reported from the other
Pools, the core keeps running and executes the atomic access
for the registered Items. Each Pool has its own Items and the
number of Items is fixed as M. Therefore, if the number of
requested Items is larger than M, some addresses cannot be
registered. In order to solve this problem, Pool is designed to
send the Item_ovf signal to the arbiter if there is no empty
space for the Item. Then, the arbiter sends the arb_decision
signal back to the core for synchronization. When the core
completes its atomic access, it asks Core-Lock Manager to
clear the corresponding Item entries. If there is any other Pool
which was blocked by this Pool, it would retry its access first
by requesting the grant from the arbiter.

5. CONCLUSIONS

 C-Lock: Performance-efficient data synchronization
method for embedded multi-core systems. In order to
minimize the performance loss due to conflict C-Lock checks
the true dependencies among the cores. It is done by
examining their address range, access type, and so on. C-Lock
can save system energy by gating clocks of some cores which
request shared data but are blocked since the data are being
occupied by another core. These properties of C-Lock
combine the advantages of locks and TM and offer the most
efficiency. Finite State Machine associated with each
core can enhance the clock performance. This will control the
current and next states of cores to enable write / read
transaction over shared memory.

5 REFERENCES

[1]. Seung Hun Kim, Sang Hyong Lee, Minje Jun, Byunghoon Lee, Won
Woo Ro, Eui-Young Chung, Jean-Luc Gaudiot,” C-Lock : Energy
Efficient Synchronization for Embedded Multi-core Systems” IEEE
Transactions on computers, VOL. X, NO. X, XXXX XXXX

[2]. Christian Stoif, Martin Schoeberl, Benito Liccardi, Jan Haase ,”
Hardware Synchronization for Embedded Multi-Core Processors”
IEEE Transactions,2011

[3]. M. Monchiero, G. Palermo, C. Silvano, and O. Villa, “Efficient
Synchronization for Embedded On-Chip Multiprocessors,IEEE
Transactions,2010

[4]. David Lee,Mihalis Yannakakis ,AT&T Bell Laboratories Murray Hill,
New Jersey,”Principles And Methods Of Testing Finite State
Machines- A Survey”

[5]. Clifford E. Cummings, Sunburst Design, Inc.“The Fundamentals of
Efficient Synthesizable Finite State Machine Design using NC-Verilog
and Build Gates” 2002

[6]. R. Rajwar and J. Goodman, “Speculative Lock Elision: Enabling
Highly Concurrent Multithreaded Execution,” in Proc. 34th Annual
ACM/IEEE Int’l. Symp. on Microarchitecture. IEEE Computer Society,
2001, pp. 294–305.

[7]. M. Herlihy and J. E. B. Moss, “Transactional Memory: Architectural
Support For Lock-free Data Structures,” in Proc. 20th Int’l Symp. on
Computer Architecture (ISCA ’93), 1993, pp. 289–300.

[8]. C. Ferri, S. Wood, T. Moreshet, R. Iris Bahar, and M. Herlihy,
“Embedded-tm: Energy and complexity-effective hardware
transactional memory for embedded multicore systems,” Journal of
Parallel and Distributed Computing, vol. 70, no. 10, pp. 1042–1052,
2010.

[9]. T. Usui, R. Behrends, J. Evans, and Y. Smaragdakis,“Adaptive
Locks:Combining Transactions and Locks for Efficient
Concurrency,”Journal of Parallel and Distributed Computing, vol. 70,
no. 10,pp. 1009–1023, 2010.

