I nter national Journal of Ethicsin Engineering & Management Education
Website: www.ijeeein (I SSN: 2348-4748, Volume 1, I ssue 5, May2014)

PERFORMANCE-EFFICIENT DATA
SYNCHRONIZATION ARCHITECTURE FOR
MULTI-CORE SYSTEMSUSING C-LOCK

Aswathy Surendran
The Oxford College of Engineering, Bangalore
aswathysurendran4u@gmail.com

Abstract: Data synchronization among multiple cores has been
one of the critical issues which must be resolved in order to
optimize the paralldism of Multi-core architectures. Data
synchronization schemes can be classified as lock-based methods
and lock-free methods. However, none of these methods consider
the nature of embedded systems which have demanding and
sometimes conflicting requirements not only for high
performance but also for low power consumption. As an answer
to these problems, here proposes C-Lock, an energy- and
performance-efficient data synchronization method for Multi-
core embedded systems. C-Lock achieves balanced energy- and
performance-efficiency by combining the advantages of lock-
based methods and transactional memory (TM) approaches; in
C-Lock, the core is blocked only when true conflicts exist
(advantage of TM), while avoiding roll-back operations which
can cause huge overhead with regard to both performance and
energy (advantage of locks). Also, in order to save more energy,
C-Lock disables the clocks of the cores which are blocked for the
access to the shared data until the shared data become available.

1. INTRODUCTION

In modern computer systems multiple corgteayps have
become prevalent, not only for high performancektigs or
servers but also for many application such as raatevices.
Multi-core means single computing component witbr 2nore
independent actual cpu’s (called cores), that regecute
program instructions. The instructions are ordind&@PU
instructions such as add, move data etc., but tiépie cores
can run multiple instructions at the same time,réasing
overall speed for programs .Multi-core can run ipidt
instructions simultaneously.

In order to meet the incregsidemands for
higher performance, increasing CPU clock frequenag one
of the most obvious methods in traditional
However, for single cores, this is turning out wimpractical
due to prohibitive power and heat dissipation rezuents.
This limitation made the multi-core approach a muiable
and scalable solution to the performance demands
embedded systems. In fact, contemporary embeddsdnsy,
especially high-end products such as

Processo

smartphones, are rapidly adopting multi-core chapstheir
core. Nowadays data synchronization among mulé-cAr
system is a critical issue. It must be resolvedoider to
optimize the parallelism. The data synchronizatissue
comes into picture when two or more processorgrgieg to
access any shared data simultaneously.

Present data synchronization methodsbeanlassified
as either lock-based or lock-free. The former idek locks,
semaphores, and barriers; it blocks the accessew® tehared
data from the processors which fail to acquireghemission.
The latter allow all processors to access the shdata in an
optimistic manner, and then perform rollback angéxecution
when a conflict occurs.

But there are some drawbacks associated with

these methods. Lock based methods are widely usealibe
of their simple control mechanism, but they sa@iflrouch
parallelism, which results in poor performance. ck-ofree
methods such as Transactional Memory approach mperfo
speculative execution which might turn out to bestwéul of
energy when the execution must be rolled back. uchs
cases, the rollback operation consumes additionalgy.
Here proposing a novel solution to this problemkdgk, an
energy- and performance-efficient data synchroitinat
method for embedded systems. C-Lock delivers TM-lik
parallelism in race conditions by detecting trutadanflicts.
The domain area here is System-on- Chip (SOC). iS&D
integrated circuit that integrates all components @
computer or other electronic system into a sinbie.c

2. MOTIVATIONAL EXAMPLES

2.1 Transactional Memory Approach
It is providing enough programmability to the
programmers. Transactions suffer from interfereacel it
makes to abort and from heavy overheads for memocegss.
In terms of energy consumption, transactional mgntdM)

@ better than Lock based method. But it is majarfjuenced

by the architecture of the system. Ferry[8] catlegl hardware
TM as embedded TM. It is characterized by enerdjgiefcy
and simplicity. Accuracy of speculation is moreeated by
energy efficiency. If speculation is wrong, them#reegligible
energy consumption will be the result. To overcothes

I nter national Journal of Ethicsin Engineering & Management Education
Website: www.ijeeein (1 SSN: 2348-4748, Volume 1, I ssue 5, May2014)

hurdle, a method called shut down method is praghdgethis
method, when any transaction running is abortetyrits off
the processor. It is done by gating all its clocks.

2.2 Lock based Approach

Speculation Lock Elision (SLE) [6] is a hardwaresda
approach. It is a technique to remove dynamicallyacessary
lock induced serialization. It enables highly comeuat
execution of multiple threads. Whenever the datafliots
happen, to acquire the lock the corresponding tisreare
restarted.

Transactional Lock Removal also uses harevia the
conversion from lock based critical sections intakl free
optimistic transactions. It makes use of time stanfpr
resolving conflicts. Its advantages are
programmability, performance and high stability.
2.3 Hybrid Approach

As an answer to these data synchronization problems

here proposing a new approach called C-Lock (Carek]. It

is a new performance -efficient data synchronizaticethod
for multi-core embedded systems. It achieves balhnc
energy- and performance-efficiency. The main idethe C-
Lock system is to exploit available parallelism with eru
conflict detection and to minimize dynamic power
consumption with clock gating for the idle corescémbines
the advantages of both lock-based methods andattosal
memory approaches. It delivers TM-like parallelismrace
conditions by detecting true data conflicts. Theéedgon is
done by considering the type, address range, apendency
of simultaneous accesses. In those cases when dixte

improvedconflicts are detected, the cores which are notergiv

permission to access the data are immediately gjatéd in
order to minimize the dynamic power consumptiomc8ino

By combining the advantages of Lock and TM, anothespeculative execution and rollback are performetlp€k [1]

approach can be introduced, called Hybrid Approa@he
method belongs to this approach is Adaptive Lo&s [for
better performance, it dynamically selects lock hodt or
transactional memory approach. The main focus eptde
lock is on improving program execution time. Addlital
adaptive logic is needed for introducing these tdapocks.
Major drawback of this approach is, it is not havany power
saving mechanism.

results in higher energy efficiency than TM. Alsiie to the
immediate clock-gating of cores, C-Lodan consume less
energy than lock-based methods.

FSM (Finite State Machine) logicaissociated with
each core. The Clock performance can be enhancidting
finite state machine logic. This Finite State Maeh
associated with each core will control the current next
states of cores to enable write / read transadiar shared

In summary, we can say that TM[7] Methods are nomemory. The formal model of a communicating fingate

well designed from energy perspective. On the savag
traditional lock schemes are inadequate from aopednce
perspective. So it necessitates the need of a appebach for
data synchronization which combines the advantaga# the
above approaches, i.e. C-Lock (Core-Lock). But €K s
having a unique approach i.e. normally behaves ldak
scheme for energy efficiency, but it shows a trafisaal
behavior for checking data conflicts. It does clgalting the
stalls for power saving.

3 CORE LOCK (C- Lock)

machine plays an important role in three differargas of p
design: formal validation, protocol synthesis, and
conformance testing. A finite-state machine, or F§Nb] for
short, is a model of computation based on a hyjpictie
machine made of one or more states. Only a singte san be
active at the same time, so the machine must tr@androm
one state to another in order to perform differantions.
FSMs are commonly used to organize and represent an
execution flow. Basically a FSM consists of comlbimaal,
sequential and output logic. Combinational logicused to
decide the next state of the FSM; sequential logjiosed to
store the current state of the FSM. The outputclagi a

The data synchronization issue arises when two amixture of both combinational and sequential lodicis a

more processors access any shared data simultdneousnathematical model of

Mishandling of these conflicts results in incorregerations
and cause fatal errors.

computationused to design
both computer programs and sequential logic ciscuit is

Some problems occurred areonceived as an abstract machine that can be ifoadinite

Communication overhead, Performance overhead, Pow&umber of states. The machine is in only one sia@ time;

consumption issues etc.

In the burst waited stage t the state it is in at any given time is called ¢herent state. It

requesting processors are tied up sending out ngolli can change from one state to another when initifteda

messages. Additional
conditions that require extra mechanism for
prevention which further degrade system performakbil
the request is obtained the requesting processees 1o
continuously place the lock requests on the sydiam In a
shared memory multi-processor with spin
synchronization, the no. of synchronization reguestows
nonlinearly with no. of contending process making system
not scalable.

contention may lead to ded&dloctriggering event or condition; this is called ansdion. A
deddloc particular FSM is defined by a list of its states)d the

triggering condition for each transition.
The main idea of the C-Lodkystem is to exploit available
parallelism with true conflict detection and to mmiize

lock dynamic power consumption with clock gating for ticke

cores. Before the execution of the critical sectievery core
sends the address range to be accessed. After ttiet,
centralized peripheral C-Lock Managéecides whether the
ranges overlap or not. If there is awerlap, only one among

I nter national Journal of Ethicsin Engineering & Management Education
Website: www.ijeeein (1 SSN: 2348-4748, Volume 1, I ssue 5, May2014)

the cores that cause conflict jermitted to run while the
others are stalled with clockgatinmtil the former ends the

execution.
o Current St
Next state logic IS Outputlogic |,
Coreo (combinafional Reg|stgr (combinatonl) | Qutput
Fsm " (sequenial y
2D—| C-Lock C‘OCk
—2D—‘ ’ Fig. 3 Simple model of FSM
o Reset
Core N-1 /:\\\(f--—__ T
| v H(ad Ly — 1 write)
= / S

Clock
Source

Fig. 1 Top Level Architecture

The major modification findhe traditional
lock schemes is that, on the hardware side, antiadai
peripheral called Finite State Machine (FSM) is edido
each core.

N/
“——{delay}"slowROM
-
Fig. 4 State Diagram of FSM

The simple model and state diagram of FSM are given

It helps in greater controllability overfigyure. A finite state machine contains a finitewher of states

synchronization. The Clock performance can be etddn gng produces outputs on state transitions afteeivieg

with the finite state machine logic. FSM for eamre will
control the current and next states of cores tdlenarite /
read transaction over shared memory.

There are two types of state machines.1l) MealyeStat
Machine 2) Moore State Machine. A Moore FSM is atest

machine where the outputs are only a function efgresent
state. A Mealy FSM is a state machine where ormaare of
the outputs is a function of the present state@r@or more
of the inputs.

Fig. 2 Block Diagram

inputs (Mealy State Machine Only)
combinational sequential i combinational
logic logic ! logic
|
ol gD
next state outputs
Next » Present > —
Output
state State State Logic
Logic FF's 9
.|]
clock

inputs. Finite state machines are widely used tdehsystems
in diverse areas, including sequential circuitstaie types of
programs, and, more recently, communication prdsoco

C-Lock Manager is the key component of @&k which
is in charge of detecting true conflicts among &lceesses to
the shared data, and controlling clock-gating of ttores.
Each core is in charge of setting the necessaoyrirdtionto
C-Lock Manager, which includes base address, sizé,type
of the data it intends to access. When this infoionais set,
the core is allowed to attempt its atomic operakigmotifying
C-Lock Manager. In the next step, C-Lock Manantiates
the conflict detection routine and, in case of aflict, grants
permission to only one of the cores while gating tither
cores which intend to access the data. Note thittpleucores
can get the permissions if the accesses are nolved in any
true conflict. After the core which has obtained germission
completes its atomic access, it notifies C-Lock Mgarto
release the permission. This command also trig@etock
Manager’'s conflict detection routine. C-Lock Managéves
permission to another core by de-asserting theespanding
clock gating signal.

Assume that there axkecores in the processor, and that
each core can stofd Items with C-LockManager. Itens a
storage that contains information for checking tomaflicts
with the accesses of other cores. One lwonsists of the
following fields:

I nter national Journal of Ethicsin Engineering & Management Education
Website: www.ijeeein (I SSN: 2348-4748, Volume 1, | ssue 5, M ay2014)

» BaseAddr: base address 4 CORE-LOCKS MANAGER- OPERATION
* Size: access size
« R/W: read/write N Fool;
gldx : global index for conflict detection e ,
* V: one bit valid field for indication of the validityf Item bus port T - —item_inyg,)
I-r?'ﬁ_ml' 7 V1 Dewdiddl |5z IR Wil :'
[item, item_ouity
[stemm, Tonflier Ciedher, [Ty
! -l- — item_out;
Conflict A_R; Qﬁnﬂiﬁ ||t:.m_“.|| | | | | }-I-—IConﬂ;::Chchar”_ r_
b decizion — t,
C-Lock Manager s — conflicty =
. 3 conflict_out, '——{_ '—(wi:] : conflict;
Permit Hold Hold Permit oS conflictyz;
canflict_ing 1T = '
canflict in. ; -II T B a
‘ AR ‘ ‘ AR AR AR le_;l r‘cj:,_ | | or ; clock_enable;
C c C ¢ conflict_fny;
oreo ‘ ores ‘ ores ‘ ore ‘ . | [se=e] | [==] | who blocked me r=zister
Fig. 5 Concept of C-Lock Mechanism iy 1y T
clear_ing; _Iﬁ" =1 -
The internal architecture &@-Lock Manageris shown cliar_ini-| ‘Jt Hpm = rb_request
in Fig. It is composed oN Pook, M Item bussesa global clear_ny, ——a}]_‘ T
counter anarbiter, and a couple of signals among theols

for the purpose of detecting conflicts (signals fequesting Fig.7 Pool Architecture
conflict check to the othelPools, and for responding to the
requests). True conflicts occur

If the following conditions are simultaneously pat Both
Items are valid, their address ranges overkpleast one of
them is a write operation.

Pool is the main part of C-Lock Manager: It consistshbf
Item entries and conflict checker and clock-gating lsgic
Architecture each of Podk shown in Fig. 6. Each Core
initiates the C-Lock operation by recording the access
information to the corresponding Pool .Each cone remgister
at mostM Itens. Here the handling logic of Powmlanages the
status of the entries by checking the valid fidlgiss put the
incomingltemto an empty entry. Therefore, the program does
Globe! Counter not need to identify whictementry it is accessing.
The access is triggered when the core sémdegin
— . command to the correspondifpol through the bus. Then,
from the arbiter the Pool requests a grant to tbeflict
checking operation. This procedure is necessaceginultiple
— cores can trigger their atomic accesses at the siameif C-
pettr n » clock_enable, Lock Manageris connected via multiple buses. If tiool
gets the grant, it sets the gldx fields of the rewmdgistered
Iltem entries to the current global index values which is
broadcasted by the globabunter and the granted Paidnals
the global counter to increment the global indeXuea
simultaneously. After that, the Pdmloadcasts all th®! Itens

)

porty » clock_enabley

BORL — Pk | Clock_enabley: to the item busesnd requests the other Pools to check for
conflicts by comparing the broadcastikens and their own
conflict check request Mitom buses registered Items. Immediately after, the conflict checking
R process is done in the other Pools. The major phthis
conflict signals process is done by the conflict checker. A contticecker is
dedicated to attem entry and checks whether any of tde
Fig. 6 C-Lock Manager Intemal Architecture broadcastettens causes true conflicts with its owem True

conflicts is detected when bottenms are valid,when their
address ranges overlap and there should be at de&siof
them is a write operation.

I nter national Journal of Ethicsin Engineering & Management Education
Website: www.ijeeein (I SSN: 2348-4748, Volume 1, | ssue 5, M ay2014)

Each conflict checker performs these opmmafor all 31

the broadcastedtens and finally produces out the conflict

signal by simply ORing the results. By ORing ak ttonflict [4].

signals from the conflict checkers again, the Podlly
makes the signal which indicates whether any of the

broadcastedtens are in conflict with thétens in this Pool. [}
The signal is ANDed with the arb_decisisignal to output
the final conflict_ousignal. [6].

Then, the Poalhich requested conflict checks from the
other Pools collects the results by noticing theflict_in

signals. If any of the othdé?ools shows conflict, it means the (7}

requested atomic access cannot be triggered atirtiés and
therefore, the Pootlisables the clock of the corresponding
core. And, the conflict_in signals are stored ire ttvho
blocked meregister. So Pool can watch the events of the
blocking Pools being cleared and retry its acca@$sés can
surely avoid the blockeBools watching the activities from all

the other cores. When no conflicts are reportechftioe other [9].

Pools, the core keeps running and executes thei@tmoess
for the registeredtems. EachPool has its owntems and the
number ofltens is fixed asM. Therefore, if the number of
requestedtens is larger tharM, some addresses cannot be
registered. In order to solve this problem, Pisadlesigned to
send the Item_ovsignal to the arbiter if there is no empty
space for thdtem Then, the arbitesends the arb_decision
signal back to the core for synchronization. Wheea tore
completes its atomic access, it asks Core-Lock Iganto
clear the correspondiritementries. If there is any oth@&ool
which was blocked by thiBool, it would retry its access first
by requesting the grant from the arbiter.

5. CONCLUSIONS

C-Lock: Performance-efficient data synchronization
method for embedded multi-core systems. In order to
minimize the performance loss due to conflict C.abecks
the true dependencies among the cores. It is done b
examining their address range, access type, and.s€-Lock
can save system energy by gating clocks of somesaghich
request shared data but are blocked since theadatheing
occupied by another core. These properties of U¢Loc
combine the advantages of locks and TM and offerrntost
efficiency. Finite State Machine @dated with each
core can enhance the clock performance. This cwiltrol the
current and next states of cores to enable writeedd
transaction over shared memory.

5 REFERENCES

[1]. Seung Hun Kim, Sang Hyong Lee, Minje Jun, Byunghbes, Won
Woo Ro, Eui-Young Chung, Jean-Luc GaudioG:Lock : Energy
Efficient Synchronization foEmbedded Multi-core Systems” IEEE
Transactions on computers, VOL. X, NO. X, XXXX XXXX

[2]. Christian Stoif, Martin Schoeberl, Benito Liccardlan Haase”
Hardware Synchronization for Embedded Multi-Coreod&rssors”
IEEE Transactions,2011

M. Monchiero, G. Palermo, C. Silvano, and O. Vill&fficient
Synchronization for Embedded On-Chip Multiprocesd&EE
Transactions,2010

David Lee,Mihalis Yannakakis ,AT&T Bell Laboratosié¢Murray Hill,
New JerseyPrinciples And Methods Of Testing Finite State
Machines- A Survéy

Clifford E. Cummings, Sunburst Design, Inttfe Fundamentals of
Efficient Synthesizable Finite State Machine Desigimg NC-Verilog
and Build Gate52002

R. Rajwar and J. Goodman, “Speculative Lock Elisi@mabling
Highly Concurrent Multithreaded Execution,” iroc. 34th Annual
ACM/IEEE Int'l. Symp. on MicroarchitecturédEEE Computer Society,
2001, pp. 294-305.

M. Herlihy and J. E. B. Moss, “Transactional MemoArchitectural
Support For Lock-free Data Structures,”Bnoc. 20th Int’l Symp. on
Computer Architecture (ISCA '93)993, pp. 289-300.

C. Ferri, S. Wood, T. Moreshet, R. Iris Bahar, avd Herlihy,
“Embedded-tm: Energy and complexity-effective haadw
transactional memory for embedded multicore sysfersurnal of
Parallel and Distributed Computingsol. 70, no. 10, pp. 1042-1052,
2010.

T. Usui, R. Behrends, J. Evans, and Y. Smaragdakiaptive
Locks:Combining Transactions and Locks for Effitien
Concurrency,Journal of Parallel and Distributed Computingol. 70,
no. 10,pp. 1009-1023, 2010.

