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Abstract: Based on the Lagrangian framework for fluid dynam-
ics, a streakline representation of flow is presented to solve com-
puter vision problems involving crowd and traffic flow. Streak-
linesaretraced in afluid flow by injecting color material, such as
smoke or dye, which is transported with the flow and used for
visualization. In the context of computer vision, streaklines may
be used in a similar way to transport information about a scene,
and they are obtained by repeatedly initializing a fixed grid of
particles at each frame, then moving both current and past par-
ticles using optical flow. Streaklines are the locus of pointsthat
connects particles which originated from the same initial posi-
tion. In this paper, a streakline technique is developed to com-
pute several important aspects of a scene, such as flow and poten-
tial functions using the Helmholtz decomposition theorem. This
leads to a representation of the flow that more accurately recog-
nizes spatial and temporal changes in the scene, compared with
other commonly used flow representations. Applications of the
technique to segmentation and behavior analysis provide com-
parison to previousy employed techniques, showing that the
streakline method outperforms the state-of-the-art in segmenta-
tion, and opening a new domain of application for crowd analysis
based on potentials.
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1. INTRODUCTION

Behavior analysis in crowded scenes remains an ppeyiem
in computer vision due to the inherent complexihd avast
diversity found in such scenes. One hurdle, thastrbe over-
come, is finding good ways to identify flow patterwithout
tracking individual objects, which is both impraeti and un-
necessary in the context

Of dense crowds. Another hurdle is finding good sviy un-
derstand changes in behavior when the scene coatekt
crowd dynamics can vary over such a wide range.

Several methods based on optical flow have beesepted in
recent years to handle these hurdles. In compigamy opti-
cal flow is widely used to compute pixel wise ingi&neous
motion between consecutive frames, and numeroubaoust
are reported to efficiently compute accurate optibew.
However, optical flow does not capture long-rangmporal
dependencies, since it is based on just two fraemas,by it-
self does not represent spatial and temporal featof a flow
that are useful for general applications.

Recently, based on the Lagrangian framework ofl fthynam-
ics, a motion of particle flow was introduced inngouter vi-
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sion. Particle flow is computed by moving a gridpafrticles
with the optical flow through numerical integratjgroviding

trajectories that relate a particles initial pasitito its position
at a later time. Impressive results employing phatiflow

have been demonstrated on crowd segmentation [d]adn
normal crowd behavior detection [2]. However, inrtjade

flow the spatial changes may be ignored, and itshgisificant
time delays. The main goal of this paper is toodtrce a no-
tion of streaklines to computer vision with theeint to reme-
dy these problems, and though our applicationcered and
traffic dynamics, the method of streaklines is agtile to
many problems that are approached through optmal f

Streaklines are well known in flow visualization, [8] and
fluid mechanics [5] as a tool for measurement amalyais of
the flow. With regard to flow visualization, strdizes are
defined as the traces of a colored material inflth&. To un-

derstand streaklines, consider a fluid flow with iak dye

injected at a particular point. If the ink is contously in-
jected, then a line will be traced out by the inkhe direction
of the flow, this is a streakline. If the directicof flow

changes, then the streaklines change accordinglyal@ines
are new to computer vision research. In this cdntkeakli-

nesmay be obtained by repeatedly initializing a gf par-

ticles and moving all particles according to théicad flow, in

the spirit of a Lagrangian fluid flow. In other ves;, place a
particle at point p, and move the particle one tstep with
the flow. In the next time step, the point p idialized with a
new particle, and then both particles are moved e flow.

Repeating this process on sometime interval T preslyar-
ticle positions from which we obtain streaklines.

In video scene analysis, which is the scope offiajzer, some
approaches consider the entire scene as a cotieaftiobjects,
and methods for scene understanding often invabject tra-

jectory clustering and human action recognitionarmples
include the tracking methods of [6] for individualsd [7] for

groups of pedestrians, and the more recent workediegrini

et al. [8] in tracking based on social force mod@dt, the do-
main of application for these methods islimitedde density

scenes with medium to high pixel resolutions oneotsj.Our
work is concerned with high density scenes and ddjects

resolution.

In other approaches, motion and tracking are sgmted by a
set of modalities such as salient feature pointsd (), spatio-
temporal volumes [11]. This promotes occlusion Hhiagd
while preserving local accuracy. In the relatedrapphes, it is
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common to represent both crowds and individuala ast of
regions, group of feature points, or sparse fldwg9], Bros-
tow and Cipolla use low level feature tracking &tett indi-
viduals in a dense crowd. Seemann etal. [12] Ptedem ge-
nerative model to detect pedestrians as a combimafioccu-
pancy distributions.

Other methods of scene understanding involve partrack-
ing, motion pattern recognition, and segmentatiaseld on
dense optical flow [13, 14]. These methods are [aomlue to
the intrinsic ability of global approaches to handkclusion.
The framework provides insight to social/group betia of
humans in crowds, but individual tracking or acti@togni-
tion is only possible through a top-down framewdrecent
works of Ali and Shah [1] on crowd analysis, an8,[16, 2]
on abnormal behavior detection fall into this carggIn addi-
tion, the particle video method [17] of Sand andlerehas a
potential application in crowded scenes as it wagirally
introduced to handle occlusions while providing skemotion
information.

Table 1: Advantages of Streaklines over StreamiémesPathlines

Streamlines Pathlines Streaklines
Spatial gaps in | Ignores spatial changgs  Fills gaps
flow

Rough transi- | Time delays Captures in-
tions in time stant changes

In this paper, we maintain three major contribwgiofirst, we
assert a streakline framework as a new tool folyaisa of
crowd videos. We demonstrate streaklines can be indor-
mative than commonly used flow representationswknas
optical flow and particle flow. Second, we presantinnova-
tive algorithm to compute a fluid like flow of crals to per-
form behavior analysis. Third, we present potertialctions
as valuable tools, for behavior analysis, and cammit the
streakline framework.

The capabilities of the streakline framework arsed in two
applications, crowd segmentation and abnormal hehale-
tection. The segmentation results demonstrate provement
for unsteady flows in comparison to state of the Hne beha-
vior detection results show an improvement overebiae
optical flow.

2. STREAKLINES VS. PATHLINES AND STREAMLINES

In fluid mechanics there are different vectordieépresenta-
tions of the flow [5].

Blue to Orange in Figure 1(b). Particle flow is gt of path-
lines which are computed from time averaged opfloal [1].
Streaklines represent the locations of all particles at a igive
time that passed through a particular point. Fidu(® shows
streaklines as red curves next to pathlines. Fwdlthat are
steady and unchanging, these three representagienghe
same, but for flows that are unsteady, so thatctimes of
flow can change with time, they are different. $inge are
using a Lagrangian model for fluid flow to expltie dynam-
ics in crowd videos, where frequent changes inflibnw are
expected, it is important to know which vector diekpresen-
tation is most appropriate for the given problemtHis work,
we provide a juxtaposition of streaklines with atrdines and
pathlines, which correspond to commonly use metHaés
18] based on optical flow and particle flow, redpesty. Our
theory and results show that streamlines leaveaadps in
the flow, as well as choppy transitions betweem#és. This is
because it is produced from instantaneous velogitstors.
Hence, this approach does not produce fluid-likewflfor
crowd videos [19]. Pathlines overcome this problnfilling
the spatial gaps, but do not allow for detectiorochl spatial
changes, and in addition create an artificial titag. Our
streakline approach provides solutions to eacthe$d prob-
lems, and Table 1 gives an overview of the advasag

Table 2: A table of values for x-coordinate paetigositions, which are com-
puted from the optical flow. Columns correspongathlines and rows cor-
respond to streaklines.
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To explain how streaklines are computed, £&ti), y/ (i) to
particle position at time t, initialized at a poiptand frame i
fori, t=0, 1, 2...... , T. Repeated initialization atrpplies

Particle advection is achieved by

xP (6 +1) =xP(@©) +u(xP @), yF (©),1)
yP(t+1) =y @) +v(xF (@), yP @), t) .1

Where u and v represent the velocity field obtaifrech opti-

Streamlines are tangent to the velocity vectors at every pointcal flow. This yields a family of curves, all stad at point p

in the flow. These correspond to optical flow, aamdsisual
example is given in Figure 1(a). Pathlines arestiajries that
individual particles in a fluid flow will follow. hese directly
correspond to integration of optical flow in timedaare illu-
strated by a set of curves with the spectrum obrsofrom
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and tracing the path of the flow from that pointfirame i.
Naturally, for steady flovall these curves lie along the same path,
but for unsteady flows the curves vary in directaond shape, charac-
teristic of pedestrian flow.
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Fig. 2: (a) an illustration of streaklines for @eo sequence. (b) The crowd
segmentation algorithm. (c) Abnormal behavior débecalgorithm

Y]

Particle advection for all i, t =0, 1, 2, . .T using (1), yields
a table of values for’t) (shown in Table 2) and similarly for
yP(t) The columns of the table show the pathline§t, LT),
which are the particle trajectories from time tTtoThe rows
provide the streaklines’@, t), connecting all particles from t
frames that originated at point p. Correspondinghts table,
Figure 1 illustrates the set of streaklines andlpas for an
example unsteady flow at time t = T. At the stdrbbserva-
tion, particles are initiated at every time instahpoint p. The
spectrum of lines from blue to orange represergsptithlines
of particles which have been initiated at time @.=The solid
red color lines depict streaklines. Since the fiswot steady,
the streaklines and pathlines are different.

The unsteady flow at a point can be representegithgr a set
of pathlines or a streakline. However, the stremkfirovides a
speed and memory gain, as a streakline with L glasticor-
responds to L pathlines with L x (L — 1)/2 partzldhere is
other interesting, less obvious, properties thaaglines inhe-
rit from fluid mechanics. First, in unsteady flowetra long
streaklines may exhibit shapes inconsistent with #ctual
flow, meaning they cannot be allowed to get toogl¢R0].
Second, as invented for visualization purposesaktines in
fluids transport a color material along the floweaning they
propagate changes in the flow along their path.il&itp, our
setup allows streaklines to propagate velocitiéggrgby the
instant neous optical flo®= (u, v) at the time of initializa-
tion, along the flow like a material. To this ende define an
extended particle i as a set of position and invtdocity.

pi = {xi(t)iyi (t), ui:vi} .2

Where,
w; = u(xf (), 5] (D),i),and
vi = v(xf @, 57 O, 1)
In the whole scene we consider only streaklines primg

extended particles. Figure 2(a) depicts streaklioesan ex-
ample sequence.

3. COMPUTATIONS WITH STREAKLINES

Streamlines do not provide a means to recogniztasznd
temporal changes in the flow, that streamlinesaoaild path-
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lines provide directly. This point is made herengsstreak
flow and potential functions. In essence, streakvflis ob-
tained by time integration of the velocity fieldhile potential
functions are obtained from spatial integrationd @ach pro-
vides useful information concerning the dynamics the
scene

3.1 Streak Flow

Research in social behavior of pedestrians in csoredeals
that people tend to follow a pathway trailing pedaas who
have similar paths as a group [21]. As a pedesiasses a
point, there is a social expectation that any ofheiestrian
behind him/her would follow a similar path. Considg this
social behavior, the actual, but invisible, flow pédestrians
has no gaps between individuals who are walkinglaiiyn.
Hence, for crowd motion, gaps in the optical flomosld be
filled along trajectories with similar motion vecsoprior to
analysis.

In order to achieve an accurate representatiodogf from
crowd motion, we use the streaklines to comput&wa mo-
tion field which we refer to as streak flow, denbt®s=
(usve)'. To compute streak flow, we compute the streakline
by temporally integrating optical flow, as illusted in Table
2, and forming the particles as in Equation (2). Wéscribe
the computation of us; computation of vs is simil&iven
data in the vector U = [l where ye P, V¥;, p, we compute the
streak flow in the x direction at each pixel.
Based on equations (1), particle positions havepixdl accu-
racy. We compute a triangulation of pixels, whintplies that
each particleP;has three neighbouring pixels (nearest neigh-
bors). At the sub-pixel level, it is reasonablectmsider ui to
be the linear interpolation of the three neighbgripixels.
Hence, we define
U =3 Us (Ky) + & Us (ko) + & Us(ka) .3
Where k is the index of a neighboring pixel, andis the
known basis function of the triangulation of thexaon for the
i™ neighboring pixel. Using a triangular interpolatiformula,
each y (ks is computed based on the relative positions ef th
three pixels and the particle. Using (3) for a# thata points in
U; we form a linear system of equations
Ay=U .4
Where ais entries of the matrix A and us is the leastasqu
solution of (4). 1 Streak flows encapsulate motidormation
of the flow for a period of time. This resembles tiotion of
particle flow (equivalent to average optical flowhere ad-
vection of a grid of particles over a window of @rprovides
information for segmenting the crowd motion. Weusrdghat
streak flows exhibit changes in the flow fasternthzarticle
flow, and therefore, they capture crowd motionstdrein a
dynamically changing flow. This can be observedigure 3,
illustrating sample frames from a video of a tmafintersec-
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tion, which includes motions from both pedestriamsl ve-
hicles. The flow in the scene is unsteady and tfierdnt mo-

tion patterns appear in the video as the traffibt change.
The figure compares the streak flow to the partfldev and

the optical flow in capturing temporal and locahobes. For
temporal changes the flow is compared at two diffetimes:
(1) A the start of the top-down flow of traffic {leow), and

(2) at the ending stage of the up-down traffic fig&md row).

Fig. 3: The comparison of optical flow, particlevit and streak flow for Bos-
ton sequence (color coded). The red circle indictte area to notice.

Temporal changes: The first row of Figure 3 shows a frame

from the sequence a few seconds after the changetraffic
light, so vehicles and pedestrians are now mowing differ-
ent direction, from top to bottom. By comparing thea to
notice inside the red circle, it is evident that 8ireak flow is
able to capture this change after only a coupl&afes, but
the particle flow lags in shaping to the new flamd the opti-
cal flow shows choppy flow segments that are diffito use
for further analysis.

Local changes: Both streak flow and particle flow has the

ability to fill in the gaps of the non-dense traffilow. In

second row of Figure 3, the optical flow showstigtion of a
car making a left turn. The particle flow is unalecapture
this change and the region on the bus and car $juitv in-
consistency compared to instantaneous flow. Thedighows
that the streak flow was more accurate in exhigitmmediate
flow changes over the car as well as the bus.

3.2 Potential Functions

Building on the fluid dynamics approach to crowdtioo, we

employ another concept from fluids providing a eliént point
of view. In simplified mathematical models of flgidit is of-

ten assumed that the fluid is incompressible, aratational.

These assumptions imply several conservation ptiegeof

the fluid, but most importantly, they lead to pdtehfunc-

tions, which are scalar functions that charactettieeflow in a
unique way. For this discourse, potential functiensble ac-
curate classification of behaviors in a scene, tvignot poss-
ible with streak flow alone. Application of poteaitifunctions
to abnormal behavior detection is presented iniGec4 and
5.

Since the optical flo2= (u, v)' denotes a planar vector field,
the Helmholtz decomposition theorem states &) .+ Q |
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whereQ . andQ , respectively denote the incompressible and
irrotational parts of the vector field. To clarifgm incompress-

ible vector field is divergence fréé- Q = 0, and an irrota-

tional vector field is curl fre@x Q = 0. Thus, there are func-
tionsy and® known respectively as the stream function and
the velocity potential, satisfyin@ .-V ,, (see, for example [5]).
Following [22], we use Fourier transforms to decos®m in-

compressible and irrotational parts of the vecteidfand es-
timate the potential functions using

D(xy) = Do+ [(u(sy)+U(s,0)ds+Ux,s)+¥(0,8)ds .5
YY) = Yo+ [ (ux,8)+u(0,5)ds-Us.y)+w(0,s)ds ...

Potential functions are computed in Corpetti et[2R] and
used in a meteorological application to track weathatterns
in satellite images the algorithm for detectionlarfe and di-
vergent/convergent regions is explained in Seation

4. APPLICATIONS OF STREAKLINES

Using streak flow and potential functions, we desiate the
strength of our approach for crowd segmentation aibor-
mal behavior detection in unsteady flows. In thd,eme find
that our method performs better than other metliodsolv-
ing these problems.

Fig 4: An illustration of discrimination power obfentials for six manually
labeledbehaviors. The first two columns, escape panic fidliN Dataset
[23], column 3shows circulating motion of cars in a lane, andicwoi 4 to 6
show traffic forminganes from NGSIM dataset. Potentials are scaledao-
imum value and plotted usirjgt color map. (1st row) The lanes are overlaid
the frame for the steady motions™(&w) divergent regions (red circles) and
convergent regions (green circle). (3rd row) Stigaes, which are contours
of stream function.

4.1 Crowd Segmentation

In this algorithm, we segment every frame of thdeai into
regions of different motions based on the simiyawf the
neighboring streaklines. Similar streaklines cqogsl to sim-
ilar trajectories of particles passing from neighitiog pixels
over a period of time. Hence, it captures the #ffiof current
and previous motions at these pixels. Figure 2dsqumts the
block diagram of the segmentation algorithm. Fifitme by
frame optical flow of the video is computed. Usthg optical
flow, a set of particles is then moved over theneato con-
struct the streaklines and the streak flow. Thasmntities are
used to compute similarity in an 8 connectivitygidgiorhood.
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For every pair of pixels i and j, the similarity g@mputed in
terms of streaklines and streak flow. Each pixeddsociated
with a streakline of length I. The streakline samity is com-

puted using the sum of the normalized projectidhmternal

vectors as Kij)=Y5 21, prj (XL, X, ) where X}, and prj (.,.)
are defined in figure 5.a streak flows similaritisscomputed
as Ryij)=]|cos QL) - cos Q! )|whereL Qi is the

angle of the streak flow vector at pixel i. In orde define
boundaries of the regions, we compute the simylariap at
every pixel using.

H(@) = Yjena) @Rs(0,j) + BRa (i, )) o f

Wherea andf are weights regulating the share of streaklin

and streak flow similarities in the final segmeiaat We use

a = 0.8 and3 = 0.2 in the experiments. Since similar motions

over time build similar streaklines and streak fowounda-
ries of different motions form valleys in the siarity map.
Using the negative of the similarity map, we segmim
crowd into regions of similar motion with watersheegmen-
tation result are presented in section 5.1.

Lane detection: In addition to segmenting a frame into re-

gions of consistent motion, we combine informatitom po-
tentials to detect lanes in each segment. As siatagction
3.2, the area between contours of correspondsetsteady
flow, and the rate of the incompressible flow bedwe pair of
contours is equal to the difference between thaesbf on
those contours. Considering this, we detect lasgsaats of a
segmented region that fall between two contouthefstream
function by a simple intersection operation (seguFé 4).

Fig. 5.(a) Streaklines S and S are set of vector X! ; and X/, , .
The originating point of streaklines (rectangles), the particles
(circles) and the normalized projections of the vectors are used
for computing the similarity of streaklines. (b) The computation
of divergencefactors, v;for aregion of interest.

4.2 Abnormal Behaviour Detection

To detect abnormal behavior of crowds, it is neagst have
a global picture of the behavior in a scene, foiclwtwe use
potential fields. The surfaced andy characterize particle
positions and velocities in a global sense, andabal beha-
viors are simply detected as large deviations fithe ex-
pected. Here, we present an algorithm to deteocbrafad be-
havior in crowds using potential functions for fl@v. Figure
2.c shows the block diagram for the algorithm. Eeery
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frame in a video sequence, the Streak flé= (us,vs) is
computed, and the potential functions of the frdiey} are
computed using equations (5) and (6). The peaksvatelys
of the potential surface convey information regagdithe
global behavior of the flow (Figure 4). Thus, pdials pro-
vide new features to distinguish global behaviarthe crowd
in compact form. For every frame, a feature vedtoiis
formed by concatenating the valuesioénd v of that frame.
Using feature vector V, we recognize behaviorsaoheframe
by training a support vector machine (SVM) classifin Sec-
tion 5, we provide comparative results of abnorimghavior
detection using potentials.

In addition to detecting abnormal behaviors, weoiporate
streaklines and the velocity potentihlto provide a descrip-
tion of the anomaly based on divergent / convergegions.
The extrema on velocity potentials correspond temjent or
convergent regions. To robustly detect these regiom find
major local extrema o®, and then compute the average di-

vergence factory =% >ivi where yis defined in Figure 5.b,

and n is the number of pixels in the radius r & é&xtremum
point. Simple thresholding of this factor distingiui diver-
gent/convergent regions as Region Type
_{ divergent,ifv > T }
“lconvergent, if ¥ < Ts

In the experiments, r is set fixed empirically fesch scene
and T = 0. As it is illustrated in Figure 4 the &@se panic
scene involves the divergent region in the center @nver-
gent regions on the sides to which the crowd isingn Simi-

larly, a sudden change in the direction of turnigdpicles or
the entry/exit points forms divergent/convergergioas. The
circular regions in the second row are the actugput of our

algorithm. Obviously, there are some mistakes (20F@r

example, in circling traffic, column 3, the region the right
is detected incorrectly.

5. EXPERIMENTAL RESULTS

We present results of algorithms outlined in Sectdo using
experiments on two datasets. A stock footage datasa the
web [2] is used for streakline analysis, and astérom the
University of Minnesota [23], which contains 11 eab of
crowd escape panic, is used to evaluate the eféawss of
potentials for abnormal behavior detection.

5.1 Results of Crowd Motion Segmentation

Results of our proposed segmentation algorithmpaoeided
here. We compare with the state of the art [1],smaTing
crowds with dynamic segmentations, such that theiomo
patterns vary in time exhibiting different statesbehavior.
Figure 6 provides segmentation results for two ssem@and
video frames are overlaid by colored segmentatgions. In
this experiment, the length of streaklines and lpsh is | =
40. On the left side of Figure 6, an intersectisrshown in
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Boston, containing three behavioral phases repredehy
frames 40, 197, and 850. (1) South bound traffiorimed. (2)
Traffic lights change and an east/west bound (ftorstation)
a flow of pedestrians emerges. (3) Traffic lightaicge again,
and a north bound vehicle flow is formed togethéghwan east
bound pedestrian flow. On the right side of Figéran inter-
section is shown in Argentina containing three bédral
phases. (1) East/west bound traffic is formed. A&gr the
traffic lights change, a south bound vehicle flowmdaa
north/south pedestrian flow develop. (3) Traffighis change
to the first phase and east/west bound flows resuiremes
115 and 213 illustrate the start of phases 2 amdspectively.
The optical flow of this video is particularly ngisas it is
based on time-lapse imagery, whereas the Bostareseq is
a regular 30fps video. Videos are available inghpplemen-
tary material. Figure 6 demonstrates segmentatiased on
streaklines are spatially and temporally pronouraed more
accurate in dynamic scenes than the state of th&Var high-
light the gains in using our method in each frame.

Fig. 6: Comparison of segmentation results usirgpktines (1st row), and
pathlines(2nd row) for scenes with unsteady motions

A walking pedestrian and the north bound vehicldiomoare
segmented correctly. (Frame 197) Pedestrians are distin-
guished from the south bound cars. (Frame850) Ahsoound
pedestrian (first row, green) is separated fromtmdwound
vehicles. (Frame 115, 4th column) Different pedastflows
are distinguishedfirst row, cyan and purple). (Frame 213)
West bound vehicle flow (first row, yellow) is segnied ear-
lier, at start of phase 2 of the video.

In Figure 7, the quantitative comparison of theposed seg-
mentations method and [1] is provided. In this expent,

frame by frame segmentations of both methods amgpaced
as following. The number of objects (human/vehidle)the

each segmented region is counted provided thdirgstion of

motion is no more that 90 degrees apart from thmection

motion of the majority of the objects. We refertliis number
as the number of correctly segmented objects (gped-7.a).
To evaluate the methods, this number is countecuadgnfor

a subset of frames of Boston and Argentina videpiseces.
Figure 7 demonstrates that streakline segmentatigper-

forms the state of the art in number of correctig &ncorrect-
ly segmented objects.

5.2 Results of Abnormal Behavior Detection

This section illustrates results for abnormal bébrasietection
on the UMN dataset [23], containing 11 sequences 3fo
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scenes. In this dataset, pedestrians initially walkdomly,
and exhibit escape panic by running in differemeclions in
the end. Figure 4 show that potential functionsvigt® rich
information about global behavior. Interesting prdjes of
potentials are revealed as we compare _ for frawlesre
people escape to all sides to the frames whichlpeop in a
single direction (2nd column). In order to illuggathe
strength of potentials in representing the glokethdvior we
compared our method using different features. Ipeexnent
(a), we first use frame-based potentials as thetifgatures V
for training a SVM with RBF kernels. Second, we wseto-
rized streak flowQs= (us,vs) and third, we use average base-
line optical flow (pyramidal LK) to perform the santask.

Figure 7.e compares the recognition results usirygod these
three features for a different number of trainingraples. In
order to reduce the computation time, we down santipé

features of each frame by factor of n = 20. In thiperiment,
the frames from different scenes in the dataset@meined in
a single pool and a portion is selected as tha wsat and the
rest is considered as the test set (no overlags. figure

shows that after increasing the number of examipleserely

20%, the potentials show considerable improvemenper-

formance. In addition, the figure illustrates theesgth of
streak flows compared to particle flow in providimjorma-

tion for abnormal behavior detection. In experimény, we

performed a leave-one-out cross validation on tMNUWata-

set using down sampled version of potentials ardame opt-
ical flow. In this experiment, we trained a SVM WiRBF

kernels on 10 videos and computed the false pesihd true
positives on one video sequence and repeatingdhiall the

11 videos. Figure 7.f illustrates the ROC of thiperiment
which indicates improvement using potentials ovasdiine
optical flow.

: ﬂ ./_f/ = .

Vel B |

Fig. 7: (a) the criterion for segmentation evaloati(green) correctly seg-
mented object, (red) incorrectly segmented obj@dt. (c), and (d) Quantita-
tive comparison of segmentation results using klirezs (blue), and pathlines
[1] (red). (e,f) Abnormal behavior recognition, {§riation of the number of
training examples. (f) ROC of the cross validation.

6. CONCLUSION

Based on a Lagrangian particle dynamics frameworKlfid

flow, we juxtapose three vector field representaiof the
flow, given by streamlines, pathlines and streadinWith
application to problems in segmentation and abnbbaha-
viour detection for crowd and traffic dynamics, slgow that
the streakline representation is advantageous. \Woepared
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to the other two representations, which are comynaséd to
solve problems in computer vision, streaklines destrated
the ability to quickly recognize temporal changesa se-
guence, in addition to finding a balance betweewgaition
of local spatial changes and filling spatial gapsthe flow.
When used to compute potential functions and tdopar
segmentation, the streakline approach was suptriasing
optical flow and comparable to using particle flagjde from
the ability to recognize scene changes. With regarabnor-
mal behavior detection, the method of streaklimesgd supe-
rior to both of the other representations and tiv@duction of
potential functions for this purpose proved valeabl
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