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Abstract: Based on the Lagrangian framework for fluid dynam-
ics, a streakline representation of flow is presented to solve com-
puter vision problems involving crowd and traffic flow. Streak-
lines are traced in a fluid flow by injecting color material, such as 
smoke or dye, which is transported with the flow and used for 
visualization. In the context of computer vision, streaklines may 
be used in a similar way to transport information about a scene, 
and they are obtained by repeatedly initializing a fixed grid of 
particles at each frame, then moving both current and past par-
ticles using optical flow. Streaklines are the locus of pointsthat 
connects particles which originated from the same initial posi-
tion. In this paper, a streakline technique is developed to com-
pute several important aspects of a scene, such as flow and poten-
tial functions using the Helmholtz decomposition theorem. This 
leads to a representation of the flow that more accurately recog-
nizes spatial and temporal changes in the scene, compared with 
other commonly used flow representations. Applications of the 
technique to segmentation and behavior analysis provide com-
parison to previously employed techniques, showing that the 
streakline method outperforms the state-of-the-art in segmenta-
tion, and opening a new domain of application for crowd analysis 
based on potentials. 
 
 Keywords: Streaklines, Pathlines, Streamlines, Streakflow 
 

1. INTRODUCTION 
 
Behavior analysis in crowded scenes remains an open problem 
in computer vision due to the inherent complexity and vast 
diversity found in such scenes. One hurdle, that must be over-
come, is finding good ways to identify flow patterns without 
tracking individual objects, which is both impractical and un-
necessary in the context  
 
Of dense crowds. Another hurdle is finding good ways to un-
derstand changes in behavior when the scene context and 
crowd dynamics can vary over such a wide range. 
 
Several methods based on optical flow have been presented in 
recent years to handle these hurdles. In computer vision, opti-
cal flow is widely used to compute pixel wise instantaneous 
motion between consecutive frames, and numerous methods 
are reported to efficiently compute accurate optical flow. 
However, optical flow does not capture long-range temporal 
dependencies, since it is based on just two frames, and by it-
self does not represent spatial and temporal features of a flow 
that are useful for general applications. 
 
Recently, based on the Lagrangian framework of fluid dynam-
ics, a motion of particle flow was introduced in computer vi-

sion. Particle flow is computed by moving a grid of particles 
with the optical flow through numerical integration, providing 
trajectories that relate a particles initial position to its position 
at a later time. Impressive results employing particle flow 
have been demonstrated on crowd segmentation [1] and ab-
normal crowd behavior detection [2]. However, in particle 
flow the spatial changes may be ignored, and it has significant 
time delays. The main goal of this paper is to introduce a no-
tion of streaklines to computer vision with the intent to reme-
dy these problems, and though our applications are crowd and 
traffic dynamics, the method of streaklines is applicable to 
many problems that are approached through optical flow. 
  
Streaklines are well known in flow visualization [3, 4] and 
fluid mechanics [5] as a tool for measurement and analysis of 
the flow. With regard to flow visualization, streaklines are 
defined as the traces of a colored material in the flow. To un-
derstand streaklines, consider a fluid flow with an ink dye 
injected at a particular point. If the ink is continuously in-
jected, then a line will be traced out by the ink in the direction 
of the flow, this is a streakline. If the direction of flow 
changes, then the streaklines change accordingly. Streaklines 
are new to computer vision research. In this context, streakli-
nesmay be obtained by repeatedly initializing a grid of par-
ticles and moving all particles according to the optical flow, in 
the spirit of a Lagrangian fluid flow. In other words, place a 
particle at point p, and move the particle one time step with 
the flow. In the next time step, the point p is initialized with a 
new particle, and then both particles are moved with the flow. 
Repeating this process on sometime interval T produces par-
ticle positions from which we obtain streaklines.  
 
In video scene analysis, which is the scope of this paper, some 
approaches consider the entire scene as a collection of objects, 
and methods for scene understanding often involve object tra-
jectory clustering and human action recognition. Examples 
include the tracking methods of [6] for individuals and [7] for 
groups of pedestrians, and the more recent work of Pellegrini 
et al. [8] in tracking based on social force model. Yet, the do-
main of application for these methods islimited to low density 
scenes with medium to high pixel resolutions on objects.Our 
work is concerned with high density scenes and low objects 
resolution. 
 
 In other approaches, motion and tracking are represented by a 
set of modalities such as salient feature points [9, 10], spatio-
temporal volumes [11]. This promotes occlusion handling 
while preserving local accuracy. In the related approaches, it is 
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common to represent both crowds and individuals as a set of 
regions, group of feature points, or sparse flows. In [9], Bros-
tow and Cipolla use low level feature tracking to detect indi-
viduals in a dense crowd. Seemann etal. [12] Presented a ge-
nerative model to detect pedestrians as a combination of occu-
pancy distributions. 
  
Other methods of scene understanding involve particle track-
ing, motion pattern recognition, and segmentation based on 
dense optical flow [13, 14]. These methods are popular due to 
the intrinsic ability of global approaches to handle occlusion. 
The framework provides insight to social/group behavior of 
humans in crowds, but individual tracking or action recogni-
tion is only possible through a top-down framework. Recent 
works of Ali and Shah [1] on crowd analysis, and [15, 16, 2] 
on abnormal behavior detection fall into this category. In addi-
tion, the particle video method [17] of Sand and Teller has a 
potential application in crowded scenes as it was originally 
introduced to handle occlusions while providing dense motion 
information. 
 

Table 1: Advantages of Streaklines over Streamlines and Pathlines 
 

Streamlines Pathlines  Streaklines 
Spatial gaps in 
flow 

Ignores spatial changes Fills gaps 

Rough transi-
tions in time 

 Time delays Captures in-
stant changes 

 
In this paper, we maintain three major contributions. First, we 
assert a streakline framework as a new tool for analysis of 
crowd videos. We demonstrate streaklines can be more infor-
mative than commonly used flow representations, known as 
optical flow and particle flow. Second, we present an innova-
tive algorithm to compute a fluid like flow of crowds to per-
form behavior analysis. Third, we present potential functions 
as valuable tools, for behavior analysis, and compliment the 
streakline framework. 
 
The capabilities of the streakline framework are tested in two 
applications, crowd segmentation and abnormal behavior de-
tection. The segmentation results demonstrate an improvement 
for unsteady flows in comparison to state of the art. The beha-
vior detection results show an improvement over base-line 
optical flow. 
 

     
2. STREAKLINES VS. PATHLINES AND STREAMLINES 
             
 In fluid mechanics there are different vector field representa-
tions of the flow [5]. 
Streamlines are tangent to the velocity vectors at every point 
in the flow. These correspond to optical flow, and a visual 
example is given in Figure 1(a). Pathlines are trajectories that 
individual particles in a fluid flow will follow. These directly 
correspond to integration of optical flow in time and are illu-
strated by a set of curves with the spectrum of colors from 

Blue to Orange in Figure 1(b). Particle flow is the set of path-
lines which are computed from time averaged optical flow [1]. 
Streaklines represent the locations of all particles at a given 
time that passed through a particular point. Figure 1(c) shows 
streaklines as red curves next to pathlines. For flows that are 
steady and unchanging, these three representations are the 
same, but for flows that are unsteady, so that directions of 
flow can change with time, they are different. Since we are 
using a Lagrangian model for fluid flow to exploit the dynam-
ics in crowd videos, where frequent changes in the flow are 
expected, it is important to know which vector field represen-
tation is most appropriate for the given problem. In this work, 
we provide a juxtaposition of streaklines with streamlines and 
pathlines, which correspond to commonly use methods [16, 
18] based on optical flow and particle flow, respectively. Our 
theory and results show that streamlines leave spatial gaps in 
the flow, as well as choppy transitions between frames. This is 
because it is produced from instantaneous velocity vectors. 
Hence, this approach does not produce fluid-like flow for 
crowd videos [19]. Pathlines overcome this problem by filling 
the spatial gaps, but do not allow for detection of local spatial 
changes, and in addition create an artificial time lag. Our 
streakline approach provides solutions to each of these prob-
lems, and Table 1 gives an overview of the advantages.  
 
Table 2:  A table of values for x-coordinate particle positions, which are com-
puted from the optical flow. Columns correspond to pathlines and rows cor-

respond to streaklines. 
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Where u and v represent the velocity field obtained from opti-
cal flow. This yields a family of curves, all starting at point p 
and tracing the path of the flow from that point in frame i. 
Naturally, for steady flow all these curves lie along the same path, 
but for unsteady flows the curves vary in direction and shape, charac-
teristic of pedestrian flow. 
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Fig. 2: (a) an illustration of streaklines for a video sequence. (b) The crowd 
segmentation algorithm. (c) Abnormal behavior detection algorithm 
             
Particle advection for all i, t = 0, 1, 2, . . . , T using (1), yields 
a table of values for xp

i(t) (shown in Table 2) and similarly for  
yp

i(t) The columns of the table show the pathlines  Lp(t, T), 
which are the particle trajectories from time t to T. The rows 
provide the streaklines Sp (0, t), connecting all particles from t 
frames that originated at point p. Corresponding to this table, 
Figure 1 illustrates the set of streaklines and pathlines for an 
example unsteady flow at time t = T. At the start of observa-
tion, particles are initiated at every time instant at point p. The 
spectrum of lines from blue to orange represents the pathlines 
of particles which have been initiated at time t = 0. The solid 
red color lines depict streaklines. Since the flow is not steady, 
the streaklines and pathlines are different. 
 
The unsteady flow at a point can be represented by either a set 
of pathlines or a streakline. However, the streakline provides a 
speed and memory gain, as a streakline with L particles cor-
responds to L pathlines with L × (L − 1)/2 particles. There is 
other interesting, less obvious, properties that streaklines inhe-
rit from fluid mechanics. First, in unsteady flows, extra long 
streaklines may exhibit shapes inconsistent with the actual 
flow, meaning they cannot be allowed to get too long [20]. 
Second, as invented for visualization purposes, streaklines in 
fluids transport a color material along the flow, meaning they 
propagate changes in the flow along their path. Similarly, our 
setup allows streaklines to propagate velocities, given by the 
instant neous optical flow Ω= (u, v)T at the time of initializa-
tion, along the flow like a material. To this end, we define an 
extended particle i as a set of position and initial velocity.                                
 

                  �� 	 ����
�, ��  �
�, �� , ���               …2 
 

Where,  
 �� 	 ����

����, ��
����, ��, ��� 
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In the whole scene we consider only streaklines comprising 
extended particles. Figure 2(a) depicts streaklines for an ex-
ample sequence.  
 

3. COMPUTATIONS WITH STREAKLINES 
 
Streamlines do not provide a means to recognize spatial and 
temporal changes in the flow, that streamlines nor could path-

lines provide directly. This point is made here using streak 
flow and potential functions. In essence, streak flow is ob-
tained by time integration of the velocity field, while potential 
functions are obtained from spatial integration, and each pro-
vides useful information concerning the dynamics in the 
scene. 
 
3.1 Streak Flow  
 
Research in social behavior of pedestrians in crowds reveals 
that people tend to follow a pathway trailing pedestrians who 
have similar paths as a group [21]. As a pedestrian passes a 
point, there is a social expectation that any other pedestrian 
behind him/her would follow a similar path. Considering this 
social behavior, the actual, but invisible, flow of pedestrians 
has no gaps between individuals who are walking similarly. 
Hence, for crowd motion, gaps in the optical flow should be 
filled along trajectories with similar motion vectors prior to 
analysis.  
 
In order to achieve an accurate representation of flow from 
crowd motion, we use the streaklines to compute a new mo-
tion field which we refer to as streak flow, denoted Ωs= 
(us,vs)

T. To compute streak flow, we compute the streaklines 
by temporally integrating optical flow, as illustrated in Table 
2, and forming the particles as in Equation (2). We describe 
the computation of us; computation of vs is similar. Given 
data in the vector U = [ui], where ui ∈ Pi, ∀i, p, we compute the 
streak flow in the x direction at each pixel.  
Based on equations (1), particle positions have sub-pixel accu-
racy. We compute a triangulation of pixels, which implies that 
each particle ��has three neighbouring pixels (nearest neigh-
bors). At the sub-pixel level, it is reasonable to consider ui to 
be the linear interpolation of the three neighboring pixels. 
Hence, we define  
 
ui = ai us (k1) + a2 us (k2) + a3 us (k3)               …3  
 
Where ki is the index of a neighboring pixel, and aj is the 
known basis function of the triangulation of the domain for the 
j th neighboring pixel. Using a triangular interpolation formula, 
each us (ks) is computed based on the relative positions of the 
three pixels and the particle. Using (3) for all the data points in 
U; we form a linear system of equations  

              Aus = U                                           …4       
                                                                                  

Where ai is entries of the matrix A and us is the least square 
solution of (4). 1 Streak flows encapsulate motion information 
of the flow for a period of time. This resembles the notion of 
particle flow (equivalent to average optical flow) where ad-
vection of a grid of particles over a window of time provides 
information for segmenting the crowd motion. We argue that 
streak flows exhibit changes in the flow faster than particle 
flow, and therefore, they capture crowd motions better in a 
dynamically changing flow. This can be observed in Figure 3, 
illustrating sample frames from a video of a traffic intersec-
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tion, which includes motions from both pedestrians and ve-
hicles. The flow in the scene is unsteady and the different mo-
tion patterns appear in the video as the traffic lights change. 
The figure compares the streak flow to the particle flow and 
the optical flow in capturing temporal and local changes. For 
temporal changes the flow is compared at two different times: 
(1) A the start of the top-down flow of traffic (1st row), and 
(2) at the ending stage of the up-down traffic flow (2nd row). 
 

 
Fig. 3: The comparison of optical flow, particle flow and streak flow for Bos-

ton sequence (color coded). The red circle indicates the area to notice. 
 
Temporal changes: The first row of Figure 3 shows a frame 
from the sequence a few seconds after the change of a traffic 
light, so vehicles and pedestrians are now moving in a differ-
ent direction, from top to bottom. By comparing the area to 
notice inside the red circle, it is evident that the streak flow is 
able to capture this change after only a couple of frames, but 
the particle flow lags in shaping to the new flow, and the opti-
cal flow shows choppy flow segments that are difficult to use 
for further analysis.  
 
Local changes: Both streak flow and particle flow has the 
ability to fill in the gaps of the non-dense traffic flow. In 
second row of Figure 3, the optical flow shows the motion of a 
car making a left turn. The particle flow is unable to capture 
this change and the region on the bus and car both show in-
consistency compared to instantaneous flow. The figure shows 
that the streak flow was more accurate in exhibiting immediate 
flow changes over the car as well as the bus. 
 
3.2 Potential Functions 
 
Building on the fluid dynamics approach to crowd motion, we 
employ another concept from fluids providing a different point 
of view. In simplified mathematical models of fluids, it is of-
ten assumed that the fluid is incompressible, and irrotational. 
These assumptions imply several conservation properties of 
the fluid, but most importantly, they lead to potential func-
tions, which are scalar functions that characterize the flow in a 
unique way. For this discourse, potential functions enable ac-
curate classification of behaviors in a scene, which is not poss-
ible with streak flow alone. Application of potential functions 
to abnormal behavior detection is presented in Sections 4 and 
5.  
 
Since the optical flow Ω= (u, v)T denotes a planar vector field, 
the Helmholtz decomposition theorem states that Ω= Ω c + Ω r 

where Ω c  and Ω r respectively denote the incompressible and 
irrotational parts of the vector field. To clarify, an incompress-
ible vector field is divergence free ∇・Ω = 0, and an irrota-
tional vector field is curl free ∇× Ω = 0. Thus, there are func-
tions ψ and Φ   known respectively as the stream function and 
the velocity potential, satisfying Ω c=∇ ψ (see, for example [5]). 
Following [22], we use Fourier transforms to decompose in-
compressible and irrotational parts of the vector field and es-
timate the potential functions using 
 
Φ�x, y� 	 Φ
 +

"
# $ �u&


 r(s,y)+ur(s,0)ds+vr(x,s)+vr(0,s)ds     …5 

 
ψ�x, y� 	 ψ
 +

"
# $ �u&


 c(x,s)+uc(0,s)ds-vc(s,y)+vc(0,s)ds     …6 

 
Potential functions are computed in Corpetti et al. [22] and 
used in a meteorological application to track weather patterns 
in satellite images the algorithm for detection of lane and di-
vergent/convergent regions is explained in Section 4. 
 

4. APPLICATIONS OF STREAKLINES 
 
Using streak flow and potential functions, we demonstrate the 
strength of our approach for crowd segmentation and abnor-
mal behavior detection in unsteady flows. In the end, we find 
that our method performs better than other methods for solv-
ing these problems. 
 

 
Fig 4: An illustration of discrimination power of potentials for six manually 
labeled behaviors. The first two columns, escape panic from UMN Dataset 
[23], column 3 shows circulating motion of cars in a lane, and column 4 to 6 
show traffic forming lanes from NGSIM dataset. Potentials are scaled to max-
imum value and plotted using jet color map. (1st row) The lanes are overlaid 
the frame for the steady motions. (2nd row) divergent regions (red circles) and 
convergent regions (green circle). (3rd row) Streamlines, which are contours 
of stream function. 
 
4.1 Crowd Segmentation 
 
In this algorithm, we segment every frame of the video into 
regions of different motions based on the similarity of the 
neighboring streaklines. Similar streaklines correspond to sim-
ilar trajectories of particles passing from neighbouring pixels 
over a period of time. Hence, it captures the affinity of current 
and previous motions at these pixels. Figure 2.b presents the 
block diagram of the segmentation algorithm. First, frame by 
frame optical flow of the video is computed. Using the optical 
flow, a set of particles is then moved over the frame to con-
struct the streaklines and the streak flow. These quantities are 
used to compute similarity in an 8 connectivity neighborhood. 
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For every pair of pixels i and j, the similarity is computed in 
terms of streaklines and streak flow. Each pixel is associated 
with a streakline of length l. The streakline similarity is com-
puted using the sum of the normalized projections of internal 
vectors as Rs(i,j)=∑ �)*+,"

-.
  (/-
� , /-

0  ) where  /-
�   and prj (.,.) 

are defined in figure 5.a streak flows similarities is computed 
as  RΩ(i,j)=│cos (∟Ω2

�  ) - cos (∟Ω2
0 )│where ∟ Ω2

�   is the 
angle of the streak flow vector at pixel i. In order to define 
boundaries of the regions, we compute the similarity map at 
every pixel using.             
 
3��� 	 ∑ 452��, *� � 657��, *� 0∈8���              …7 
 
Where α and β are weights regulating the share of streakline 
and streak flow similarities in the final segmentation. We use 
α = 0.8 and β = 0.2 in the experiments. Since similar motions 
over time build similar streaklines and streak flows, bounda-
ries of different motions form valleys in the similarity map. 
Using the negative of the similarity map, we segment the 
crowd into regions of similar motion with watershed segmen-
tation result are presented in section 5.1. 
 
 Lane detection: In addition to segmenting a frame into re-
gions of consistent motion, we combine information from po-
tentials to detect lanes in each segment. As stated in section 
3.2, the area between contours of   corresponds to the steady 
flow, and the rate of the incompressible flow between a pair of 
contours is equal to the difference between the values of   on 
those contours. Considering this, we detect lanes as parts of a 
segmented region that fall between two contours of the stream 
function by a simple intersection operation (see Figure 4).  
 

 
Fig. 5.(a) Streaklines Si and Sj are set of vector 9:..<=  and 9:..<

>  . 
The originating point of streaklines (rectangles), the particles 
(circles) and the normalized projections of the vectors are used 
for computing the similarity of streaklines. (b) The computation 
of divergence factors, vi for a region of interest.  
 
 
4.2 Abnormal Behaviour Detection 
 
To detect abnormal behavior of crowds, it is necessary to have 
a global picture of the behavior in a scene, for which we use 
potential fields. The surfaces Φ and ψ characterize particle 
positions and velocities in a global sense, and abnormal beha-
viors are simply detected as large deviations from the ex-
pected. Here, we present an algorithm to detect abnormal be-
havior in crowds using potential functions for the flow.  Figure 
2.c shows the block diagram for the algorithm. For every 

frame in a video sequence, the Streak flow  Ωs = (us ,vs )
T  is 

computed, and the potential functions of the frame {Φ, ψ} are 
computed using equations (5) and (6). The peaks and valleys 
of the potential surface convey information regarding the 
global behavior of the flow (Figure 4). Thus, potentials pro-
vide new features to distinguish global behaviors in the crowd 
in compact form. For every frame, a feature vector V is 
formed by concatenating the values of Φ and   ψ of that frame. 
Using feature vector V, we recognize behaviors in each frame 
by training a support vector machine (SVM) classifier. In Sec-
tion 5, we provide comparative results of abnormal behavior 
detection using potentials.  
 
In addition to detecting abnormal behaviors, we incorporate 
streaklines and the velocity potential Φ to provide a descrip-
tion of the anomaly based on divergent / convergent regions. 
The extrema on velocity potentials correspond to divergent or 
convergent regions. To robustly detect these regions, we find 
major local extrema of Φ, and then compute the average di-

vergence factor, �? = 
"
@  ∑i vi where vi is defined in Figure 5.b, 

and n is the number of pixels in the radius r of the extremum 
point. Simple thresholding of this factor distinguish diver-
gent/convergent regions as Region Type   

   =A ���B)CB�
, �D�? E F
convergent, �D�? O FP Q 

 
In the experiments, r is set fixed empirically for each scene 
and T = 0. As it is illustrated in Figure 4 the escape panic 
scene involves the divergent region in the center and conver-
gent regions on the sides to which the crowd is running. Simi-
larly, a sudden change in the direction of turning vehicles or 
the entry/exit points forms divergent/convergent regions. The 
circular regions in the second row are the actual output of our 
algorithm. Obviously, there are some mistakes (20%). For 
example, in circling traffic, column 3, the region on the right 
is detected incorrectly. 
 

5. EXPERIMENTAL RESULTS 
 
We present results of algorithms outlined in Section 4, using 
experiments on two datasets. A stock footage dataset from the 
web [2] is used for streakline analysis, and a dataset from the 
University of Minnesota [23], which contains 11 videos of 
crowd escape panic, is used to evaluate the effectiveness of 
potentials for abnormal behavior detection. 
 
5.1 Results of Crowd Motion Segmentation 
 
Results of our proposed segmentation algorithm are provided 
here. We compare with the state of the art [1], considering 
crowds with dynamic segmentations, such that the motion 
patterns vary in time exhibiting different states of behavior. 
Figure 6 provides segmentation results for two scenes, and 
video frames are overlaid by colored segmentation regions. In 
this experiment, the length of streaklines and pathlines is l = 
40. On the left side of Figure 6, an intersection is shown in 
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Boston, containing three behavioral phases represented by 
frames 40, 197, and 850. (1) South bound traffic is formed. (2) 
Traffic lights change and an east/west bound (from/to station) 
a flow of pedestrians emerges. (3) Traffic lights change again, 
and a north bound vehicle flow is formed together with an east 
bound pedestrian flow. On the right side of Figure 6, an inter-
section is shown in Argentina containing three behavioral 
phases. (1) East/west bound traffic is formed. (2) After the 
traffic lights change, a south bound vehicle flow and a 
north/south pedestrian flow develop. (3) Traffic lights change 
to the first phase and east/west bound flows resume. Frames 
115 and 213 illustrate the start of phases 2 and 3, respectively. 
The optical flow of this video is particularly noisy as it is 
based on time-lapse imagery, whereas the Boston sequence is 
a regular 30fps video. Videos are available in the supplemen-
tary material. Figure 6 demonstrates segmentations based on 
streaklines are spatially and temporally pronounced and more 
accurate in dynamic scenes than the state of the art. We high-
light the gains in using our method in each frame. 

 
Fig. 6: Comparison of segmentation results using streaklines (1st row), and 
pathlines (2nd row) for scenes with unsteady motions 

 
A walking pedestrian and the north bound vehicle motion are 
segmented correctly.  (Frame 197) Pedestrians are distin-
guished from the south bound cars. (Frame850) A south bound 
pedestrian (first row, green) is separated from north bound 
vehicles. (Frame 115, 4th column) Different pedestrian flows 
are distinguished (first row, cyan and purple). (Frame 213) 
West bound vehicle flow (first row, yellow) is segmented ear-
lier, at start of phase 2 of the video. 
 
In Figure 7, the quantitative comparison of the proposed seg-
mentations method and [1] is provided. In this experiment, 
frame by frame segmentations of both methods are compared 
as following. The number of objects (human/vehicle) in the 
each segmented region is counted provided that its direction of 
motion is no more that 90 degrees apart from the direction 
motion of the majority of the objects. We refer to this number 
as the number of correctly segmented objects (see Figure 7.a). 
To evaluate the methods, this number is counted manually for 
a subset of frames of Boston and Argentina video sequences. 
Figure 7 demonstrates that streakline segmentation outper-
forms the state of the art in number of correctly and incorrect-
ly segmented objects. 
 
5.2 Results of Abnormal Behavior Detection 
 
This section illustrates results for abnormal behavior detection 
on the UMN dataset [23], containing 11 sequences for 3 

scenes. In this dataset, pedestrians initially walk randomly, 
and exhibit escape panic by running in different directions in 
the end. Figure 4 show that potential functions provide rich 
information about global behavior. Interesting properties of 
potentials are revealed as we compare _ for frames where 
people escape to all sides to the frames which people run in a 
single direction (2nd column). In order to illustrate the 
strength of potentials in representing the global behavior we 
compared our method using different features. In experiment 
(a), we first use frame-based potentials as the input features V 
for training a SVM with RBF kernels. Second, we use vecto-
rized streak flow Ωs = (us ,vs ) and third, we use average base-
line optical flow (pyramidal LK) to perform the same task. 
Figure 7.e compares the recognition results using any of these 
three features for a different number of training examples. In 
order to reduce the computation time, we down sample the 
features of each frame by factor of n = 20. In this experiment, 
the frames from different scenes in the dataset are combined in 
a single pool and a portion is selected as the train set and the 
rest is considered as the test set (no overlaps). The figure 
shows that after increasing the number of examples to merely 
20%, the potentials show considerable improvement in per-
formance. In addition, the figure illustrates the strength of 
streak flows compared to particle flow in providing informa-
tion for abnormal behavior detection. In experiment (b), we 
performed a leave-one-out cross validation on the UMN data-
set using down sampled version of potentials and average opt-
ical flow. In this experiment, we trained a SVM with RBF 
kernels on 10 videos and computed the false positive and true 
positives on one video sequence and repeating this for all the 
11 videos. Figure 7.f illustrates the ROC of this experiment 
which indicates improvement using potentials over baseline 
optical flow. 
 

 
Fig. 7: (a) the criterion for segmentation evaluation, (green) correctly seg-
mented object, (red) incorrectly segmented object. (b), (c), and (d) Quantita-
tive comparison of segmentation results using streaklines (blue), and pathlines 
[1] (red). (e,f) Abnormal behavior recognition, (e) Variation of the number of 
training examples. (f) ROC of the cross validation. 
 
 

6. CONCLUSION 
 
Based on a Lagrangian particle dynamics framework for fluid 
flow, we juxtapose three vector field representations of the 
flow, given by streamlines, pathlines and streaklines. With 
application to problems in segmentation and abnormal beha-
viour detection for crowd and traffic dynamics, we show that 
the streakline representation is advantageous. When compared 
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to the other two representations, which are commonly used to 
solve problems in computer vision, streaklines demonstrated 
the ability to quickly recognize temporal changes in a se-
quence, in addition to finding a balance between recognition 
of local spatial changes and filling spatial gaps in the flow. 
When used to compute potential functions and to perform 
segmentation, the streakline approach was superior to using 
optical flow and comparable to using particle flow, aside from 
the ability to recognize scene changes. With regard to abnor-
mal behavior detection, the method of streaklines proved supe-
rior to both of the other representations and the introduction of 
potential functions for this purpose proved valuable.  
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