International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1sdue 4, April 2014)

MIPS BASED 64-BIT RISC CPU

Khandhoba B R
Asst.Professor.Dept.of ECE
BKEC Basavakalyan
yuvi025@gmail.com

Abstract: The main aim of the project is simulation andsynthesis
of the 32-bit RISC CPU based on MIPS. The project wolves
design of a simple RISC processor and simulating.iA Reduced
Instruction Set compiler (RISC) is a microprocessorthat had
been designed to perform a small set of instructian with the aim
of increasing the overall speed of the processom.this work, we
analyze MIPS instruction format, instruction data path, decoder
module function and design theory based on RISC (Rleced
Instruction Set Computer) CPU instruction set. Furhermore, we
use pipeline design process to simulate successfullwhich
involves instruction fetch (IF), instruction decode (ID),
execution (EXE), data memory (MEM), write back (WB)
modules of 32-bit CPU based on RISC CPU instructiorset.
Function of IF module is fetches the instruction fom memory.
The function of ID stage is sends control commands.ei,
instructions are sending to control unit and decoda here. The
EXE stage executes arithmetic. Main component of th&XE
stage is ALU. The MEM stage is to fetch data from meory and
store data to memory, if instruction is not memorylO
instruction, result is sent to WB stage. At last WBstage charges
of writing the results, stores data and input datato register file.
The purpose of WB stage is to write data to destinain
register.The idea of this project was to create a FC processor
as a building block in VHDL than later easily can beincluded in
a larger design. It will be useful in systems whera problem is
easy to solve in software but hard to solve with odrol logic.
However at a high level of complexity it is easieio implement the
function in software. In this project for simulation we use
Modelsim for logical verification, and further synthesizing it on
Xilinx-ISE tool using target technology and performng placing
& routing operation for system verification. The language we
used here is VHDL, and tools required here are MODELSV I
SE 6.4b — Simulation XILINX-ISE 10.1 - Synthesis. The
applications are automatic robot control, bottlingplant.

Keywords: RISC, MIPS, Simulation Synthesis, Instruction Set,
MODELSIM’s.

1. INTRODUCTION

Geeta patil
Asst.Professor.DeptCQH E
BKEC Basavakalyan
geetappatil@gmail.com

A cache is a special type of high speed RAM whexta énd
the address of the data are stored. Whenever theegsor
tries to read data from main memory, the cachexéanined
first. If one of the addresses stored in the caohéches the
address being used for the memory read (calledt)a the

cache will supply the data instead. Cache is confynten

times faster than main memory, so you can seedhendage
of getting data in 10 Nanoseconds instead of 6@sesonds.
Only when we miss (i.e., do not find the requiredadin the
cache), does it take the full access time of 60osaconds.
But this can only happen once. Since a copy ohthe data is
written into the cache after a miss. The data béllthere the
next time we need it. Instruction cache is usedstore

frequently used instructions. Data cache is usedstare
frequently used data. Implementing fewer instrudicand
addressing modes on silicon reduces the complefitthe

instruction decoder, the addressing logic, and ekecution
unit. This allows the machine to be clocked atsiefiaspeed,
since less work needs to be done each clock period.

RISC typically has large set of registers. The nemb
of registers available in a processor can affedbpmance the
same way a memory access does. A complex calculatay
require the use of several data values. If the dgataes all
reside in memory during the calculations, many mgmo
accesses must be used to utilize them. If the datzes are
stored in the internal registers of the proceseestead, their
access during calculations will be much fasteis jood then
to have lot of internal registers.

2. LITERATURE SURVEY

The MIPS single-cycle processor performs the tasks
instruction fetch, instruction decode, executiongnmory
access and write-back all in one clock cycle. Fite PC
value is used as an address to index the instructiemory
which supplies a 32-bit value of the next instrotito be

Risc Mips Features. Processors are much faster thaneéXecuted. This instruction is then divided into tfiéferent
memories. For examp|e’ a processor clocked at 16(x M fields shown in Table 2.1. The instructions opccﬂém bits

would like to access memory in 10 nanosecondspéhied of
its 100 MHz clock. Unfortunately, the memory interéd to
the processor might require 60 nanoseconds focemsa. So,
the processor ends up waiting during each memocgsag
wasting execution cycles.

[31-26] are sent to a control unit to determine tiype of
instruction to execute. The type of instructionrtlietermines
which control signals are to be asserted and wiadtion the
ALU is to perform, thus decoding the instructionhel
instruction register address fields $rs bits [Z8], $rt bits [20
- 16], and $rd bits [15-11] are used to addressefester file.

To reduce the number of accesses to main memory,he register file supports two independent registads and

designers added instruction and data cache torttoegsors.

20

one register write in one clock cycle. The regisierreads in

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1sdue 4, April 2014)

the requested addresses and outputs the data waloesned
in these registers. These data values can thempémted on
by the ALU whose operation is determined by thetrmdmunit

to either compute a memory address (e.g. load are)st
compute arithmetic result (e.g. add, and or skt)perform a
compare (e.g. branch). If the instruction decodearithmetic,
the ALU result must be written to a register. I¢ timstruction
decoded is a load or a store, the ALU result isithsed to
address the data memory. The final step writeg\thé result

or memory value back to the register file.

five-stage pipeline:

a. Instruction Fetch (IF): fetching the instructiororn the
memory.

b. Instruction Decode (ID): reading the registers dadoding
the instruction.

c. Execution (EX): executing an operation or calculgtan
address.

d. Data Memory (MEM): accessing the data memory.

e. Write Back (WB): writing the result into a register

'Il.ln]ll'“:{:i‘rl A L] [
{7 T S Bt
Te N
i L O S
[k
Il TH Rt
o "|
h‘ﬁ 1[':!!’5 _-IFE .@:-{f! :'% rl' i :'ﬁ E*‘
b [w s |
i
—Huir e | [al
ARl i N 1 I M
||I'£]:-\.u.::|.' f&; -] hth it 4 . -
ettt
oo o by

Figure 2a. Implementations.

]|‘||'51="-1r.
Figure 1. MIPS Single-cycle Processor i - 1 T
ity e T R
3. SYSTEM OVERVIEW i

(Mg pu—
Mips Pipelined Processor Vhdl Implementation: i, | AU g:ﬁ :'-;i
Once the MIPS single-cycle VHDL implementation was e =Nl ||
completed, our next task was to pipeline the MIP&@ssor. R dw [| R M |
Pipelining, a standard feature in RISC processiss,a |
techniqgue used to improve both clock speed and ativer — —Hengel || D],
performance. Pipelining allows a processor to wank Wi 8 | ™ u s)
different steps of the instruction at the same tithes more
instruction can be executed in a shorter periodiroé. For ?TTT?

example in the VHDL MIPS single-cycle implementatio
above, the datapath is divided into different medulwhere
each module must wait for the previous one to firdsfore it

Figure 2b. Single-cycle non-pipelined vs. pipelire@cution

can execute, thereby completing one instructiomrie long
clock cycle. When the MIPS processor is pipelindaring a
single clock cycle each one of those modules agestas in

The key to pipelining the single-cycle
implementation of the MIPS processor is the intadidun of
pipeline registers that are used to separate ttapalth into the

use at exactly the same time executing on differenfive sections IF, ID, EX, MEM and WB. Pipeline retfirs are

instructions in parallel. Figure 2 shows an exangfla MIPS
single-cycle non-pipelined (a.) versus a MIPS iy
implementation (b).The pipelined implementation mxes

used to store the values used by an instructioh g®ceeds
through the subsequent stages. The MIPS pipeliagisters
are labeled according to the stages they sepdgmtg.|F/ID,

faster, keep in mind that both use the same haslwalD/EX, EX/MEM, MEM/WB) Figure 3 shows and examplé o
components. The MIPS pipelined processor involviee f a pipelined data path excluding the control unid @ontrol
steps; the division of an instruction into five g#a implies a signal lines.

21

International Journal of Ethics in Engineering & Management Education
Website: www. ueee in (ISSN: 2348-4748, Volume 1sdue 4, April 2014)

=]

s
‘ (B L=

Figure 3. MIPS Bipelined Processor Datapatis

To implement the MIPS pipelined processor, pipetegisters

are placed into the corresponding VHDL modules that

generate the input to the particular pipeline regisFor
example, the Instruction Fetch component will gaterthe
32-bit instruction and the PC+4 value and storentliito the
IF/ID pipeline register. When that instruction mev® the
Instruction Decode stages it extracts those saweduubs from
the IF/ID pipeline register. Appendix F containg ttomplete
VHDL code used to implement the MIPS pipelined pssor
data path. Appendices G shows an example of MIB&egsor
pipelined being simulated.

4. DESIGN & IMPLEMENTATION
Introduction to Model Simulator:

Project Flow: A project is a collection mechanidior an HDL
design under specification or test. Even thoughdanit have
to use projects in ModelSim, they may ease interacwith
the tool and are useful for organizing files anccifying
simulation settings. The following diagram shows thasic
steps for simulating a design within a ModelSimjgch As
you can see, the flow is similar to the basic satiah flow.
However, there are two important differences: Yau ribt
have to create a working library in the projectMjat is done
for you automatically. Projects are persistentotiner words,
they will open every time you invoke ModelSimunlessu
specifically close them.

Design Files for this Lesson: The sampledesign for
this lesson is a simple 8-bit, binary up-counterthwan
associated testbench. The pathnames are as follows:
Verilog:

<install_dir>/examples/tutorials/verilog/basicSimulation/c
o unter.v and tounter.v

VHDL:

<install_dir>/examples/tutorial s’'vhdl/basicS mulation/counte
r.vhd andtcounter.vhd

22

This lesson uses the Verilog filesounter.v and
tcounter.v. If you have a VHDL license, usmunter.vhd and
tcounter.vhd instead. Or, if you have a mixed license, feet fre
to use the Verilog testbench with the VHDL courervice
versa.

Create a project

Add files to the project

.

Compile design files

.

Pun =immiilatine

.

Debug results

Figure 4. Project design dow

Create the Working Design Library: Before you carsimulate

a design, you must first create a library and cderthie source
code into that library.

1. Create a new directory and copy the design fibesthis

lesson into it.

Start by creating a new directory for this exercfse case
other users will be working with these lessons).

Verilog: Copycounter.v andtcounter.v files from
[<install_dir>/examples/tutorials/verilog/basicSmulation to
the new directory.

VHDL: Copycounter.vhd andtcounter.vhd files from
[<install_dir>/examples/tutorials/vhdl/basicSmulation to
the new directory.

2. Start ModelSinif necessary.

a. Typevsim at a UNIX shell prompt or use the ModelSim
icon in Windows. Upon opening ModelSim for the fitsne,
you will see the Welcome to ModelSim dialog. CliClose

b. SelectFile > Change Directory and change to

the directory you created in step 1.

3. Create the working

library. a. SelecFile

> New > Library.

This opens a dialog where you specify physical kgical

names for the library (Figure 5). You can createw library
map toan existing library.

International Journal of Ethics in Engineering & Management Education

Website: www.ijeee.in (ISSN: 2348-4748, Volume 1sdue 4, April 2014)

Run the Simulation:

Now you will open the Wave window, add
signals to it, then run the simulation.

1. Open the Wave debugging
window. a. Enteview wave
at the command line

You can also use théiew > Wave menu
selection to open a Wave window.

The Wave window is one of several windows
available for debugging. To see a list of the other
debugging windows, select théiew menu. You
may need to move or resize the windows to your
liking. Window panes within the Main window can
be zoomed to occupy the entire Main window or
undocked to stand alone. For details, see Navigatin
the Interface.

2. Add signals to the Wave window.
a. In the Workspace pane, select g tab.

b. Right-clicktest_counter to open a popup context menu.

i R R Reyale (Fask iFrocess
L T ¥ INEREEEE,
lg el Tl st al iens. n:“ﬂ._‘i“l s bl
= — Tolxg ¢ &l b T desian
A . ToCaabat T '
Esard o oched
ColEpee Seieded
Caaardal
Colepes Ol
sae L,
(ode s vEsiee B
4! Pedma s _kl
Erd S aion
m Lbu,—l-';——-lq-—-ml [F Mematins LE

Figwwz 5. Unine the Popup Bems to Add Sizeals tn Wave Window

c. SelectAdd > To Wave > All items in region(Figure 5).

All signals in the design are added to the Wavedoin
3. Run the simulation.

a.Click the Run icon in the Main or Wave window toatb
The simulation runs for 100 ns (the default simatatength)

and waves are drawn in the Wave window.

b. Enter run 500 at the VSIM> prompt in the Main

Figure 6. Waves Diravwn in Wave Window

window. The simulation advances another 500 na fotal of
600 ns (Figure 6).

c. Click the Run -All icon on the Main or Wave window
toolbar.The simulation continues running until yexecute

a break command or it hits a statement in your cedg |(
a Verilog $stop statement) that halts the simulation.
Click the Break icon. The simulation stops running.

5. Results:

Simulation Results:

The work presented in this Thesis describes a iwmeak
FPGA implementation design of a MIPS single-cycled a
pipelined processor designed using VHDL. The VHDL
designs of the MIPS processor were all simulate@rtsure
that the processors were functional and operatet @s
described by Patterson and Hennessy. The resuits Bist
the instruction memory initialization, which is asto fill the
instruction memory with the instructions to be axed,
which are indexed by the program counter (PC). §dwond is
the actual 32-bit instruction represented usingadegimal
numbers. The third is the PC value used to index th
instruction memory to retrieve an instruction. Tinext four
columns are the MIPS instruction’s mnemonic d calsrare
the pseudo instructions using the actual valued daeng the
simulation.

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1sdue 4, April 2014)

o

2H | Exl] } 1] J5HEY i

“igere | Hesnlt of sainwilation

Synthesis Result:
The developed convolution project is simulated aadfied
their functionality. Once the functional verificati is done,
the RTL model is taken to the synthesis procesaguthe
Xilinx ISE tool. In synthesis process, the RTL mbuddl be
converted to the gate level net-list mapped to ecifip
technology library. Here in this Spartan 3E famimany
different devices were available in the Xilinx 1S&ol. The
target device iISPARTAN 2 FPGA kit. In order to synthesis
this design the device nan¥@3S100Es” has* bee chosen
and the package 48Q144” withthe device speed such as “5".
RTL Schematic:
The RTL (Register Transfer Logic) can be viewedbkck
box after synthesize of design is made. It showsrputs and
outputs of the system. By double-clicking on thagdam we
can see gates, flip-flops and MUX. The above figdir&hows
the top level block diagram that contains the primaputs
and outputs of the desighevice
Utilization Summary: This device
includes the following.

a. Logic Utilization

b. Logic Distribution

utilization

Figure 8 RTL Schemaiic internal view

c. Total Gate count for the Design
The device utilization summery is shown above incihts
gives the details of number of devices used froenatailable

24

devices and also represented in %. Hence as thé ofthe
synthesis process, the device utilization in thedugevice and
package is shown abovéiming Summary: Speed Grade: -3
Minimum period: 3.203ns (Maximum Frequency:
312.173MHz) Minimum input arrival time beéo clock:
145.587ns Maximum output required time after cla&kR:56ns
Maximum combinational path delay: 6.662ns In tigiin
summary, details regarding time period and frequers
shown are approximate while synthesize. After placel
routing is over, we get the exact timing summargnet the
maximum operating frequency of this synthesizedgiess
given as 18.970 MHz and the minimum period as 2274
OFFSET IN is minimum input arrival time before dtoand
OFFSET OUT is maximum output required time aftexckl

Conclusion:

In this project it is observed that the RISC MIP&dd
system is simulated using VHDL. The overall systé&nm
simulated and synthesized, after synthesizing flstem we
could get a statistical data about the number pétioutput
buffers, the number of registers, number of flipe8 and
latches were used in the usage of FPGA tool. Thduhes
simulated are Accumulator, Buffer, Clock Generator,
Instruction Register, Multiplexer, Program Count&eset,
Control Logic Decoder, Arithmetic Logic Unit andetloverall
system. Few instructions were executed and theming
sequences were analyzed. It is found that an ewsthuction
taken 100ps.lt shows that the different operatiofisthe
instruction including the decoding and executiormes to
40ns in the overall system. Therefore we concludg the
behavior shows, the system is working as RISC sisuiction
will be executed within a single clock cycle.

8 P! St
[Catm e gt
NaddeMam:
Tand B
Pk o

e L
Vilane Honi
+ Prnbm e s

(e Qe
besim Shatey b Dbt] v Find Tomwag Scme
P i
s o b e Fod
Ut Pokesion Sy | lmsed k|]
[} el Ui

L Uiston

[e L

[PrErg e

X

Tigure 9. Summary for the Device vtilization fime

REFERENCES
[1]. Bai-zhongYing, Computer Organization, Science Pre@8p21.
[2]. WangAiYing, Organization and Structure of Computer, Tsinghua
University Press, 2006.
[3]. Wang-Yuanzhen, IBM-PC Macro Asm Program, Huazhomgvetsity
of Science and Technology Press, 1996.9.
[4]. MIPS Technologies, Inc. MIPS32™ Architecture For
ProgrammersVolume II: The MIPS32™ Instruction Sétine 9, 2003.
[5]. Zheng-WeiMin, Tang-zZhizhong. Computer System Stiest(The

second edition), Tsinghua University Press, 2006.

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1sdue 4, April 2014)

[6]. Pan-Song, Huang-JiYe, SOPC Technology Utility TialprTsinghua
University Press, 2006.

[7]. MIPS32 4KTMProcessor Core Family Software User'siiva, MIPS
Technologies Inc.

[8]. Mo-JianKun, Gao-JianSheng,Computer Organization, azang
University of Science and Technology Press, 1996.

[9]. Zhang-XiuJuan, Chen-XinHua, EDA Design and emutatitractice
[M]. Beiding, Engine Industry Press. 2003.

[10]. "IEEE Standard of Binary Floating-Point Arithmetic'lEEE
Standard754, IEEE Computer Society, 1985.

[11]. Yi-Kui, Ding-YueHua, Application of AMCCS5933 Couwlter in PCI
BUS, DCABES2007, 20077.

25

