

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1, Issue 4, April 2014)

20

MIPS BASED 64-BIT RISC CPU

Khandhoba B R Geeta patil
Asst.Professor.Dept.of ECE Asst.Professor.Dept.of ECE

BKEC Basavakalyan BKEC Basavakalyan
yuvi025@gmail.com geetappatil@gmail.com

Abstract: The main aim of the project is simulation and synthesis
of the 32-bit RISC CPU based on MIPS. The project involves
design of a simple RISC processor and simulating it. A Reduced
Instruction Set compiler (RISC) is a microprocessor that had
been designed to perform a small set of instructions, with the aim
of increasing the overall speed of the processor .In this work, we
analyze MIPS instruction format, instruction data path, decoder
module function and design theory based on RISC (Reduced
Instruction Set Computer) CPU instruction set. Furthermore, we
use pipeline design process to simulate successfully, which
involves instruction fetch (IF), instruction decoder (ID),
execution (EXE), data memory (MEM), write back (WB)
modules of 32-bit CPU based on RISC CPU instruction set.
Function of IF module is fetches the instruction from memory.
The function of ID stage is sends control commands i.e.,
instructions are sending to control unit and decoded here. The
EXE stage executes arithmetic. Main component of the EXE
stage is ALU. The MEM stage is to fetch data from memory and
store data to memory, if instruction is not memory/IO
instruction, result is sent to WB stage. At last WB stage charges
of writing the results, stores data and input data to register file.
The purpose of WB stage is to write data to destination
register.The idea of this project was to create a RISC processor
as a building block in VHDL than later easily can be included in
a larger design. It will be useful in systems where a problem is
easy to solve in software but hard to solve with control logic.
However at a high level of complexity it is easier to implement the
function in software. In this project for simulation we use
Modelsim for logical verification, and further synthesizing it on
Xilinx-ISE tool using target technology and performing placing
& routing operation for system verification. The language we
used here is VHDL, and tools required here are MODELSIM III
SE 6.4b – Simulation XILINX-ISE 10.1 – Synthesis. The
applications are automatic robot control, bottling plant.

Keywords: RISC, MIPS, Simulation Synthesis, Instruction Set,
MODELSIM’s.

1. INTRODUCTION

Risc Mips Features: Processors are much faster than
memories. For example, a processor clocked at 100 MHz
would like to access memory in 10 nanoseconds, the period of
its 100 MHz clock. Unfortunately, the memory interfaced to
the processor might require 60 nanoseconds for an access. So,
the processor ends up waiting during each memory access,
wasting execution cycles.

To reduce the number of accesses to main memory,
designers added instruction and data cache to the processors.

A cache is a special type of high speed RAM where data and
the address of the data are stored. Whenever the processor
tries to read data from main memory, the cache is examined
first. If one of the addresses stored in the cache matches the
address being used for the memory read (called a hit), the
cache will supply the data instead. Cache is commonly ten
times faster than main memory, so you can see the advantage
of getting data in 10 Nanoseconds instead of 60 nanoseconds.
Only when we miss (i.e., do not find the required data in the
cache), does it take the full access time of 60 nanoseconds.
But this can only happen once. Since a copy of the new data is
written into the cache after a miss. The data will be there the
next time we need it. Instruction cache is used to store
frequently used instructions. Data cache is used to store
frequently used data. Implementing fewer instructions and
addressing modes on silicon reduces the complexity of the
instruction decoder, the addressing logic, and the execution
unit. This allows the machine to be clocked at a faster speed,
since less work needs to be done each clock period.

RISC typically has large set of registers. The number
of registers available in a processor can affect performance the
same way a memory access does. A complex calculation may
require the use of several data values. If the data values all
reside in memory during the calculations, many memory
accesses must be used to utilize them. If the data values are
stored in the internal registers of the processor instead, their
access during calculations will be much faster. It is good then
to have lot of internal registers.

2. LITERATURE SURVEY

The MIPS single-cycle processor performs the tasks of
instruction fetch, instruction decode, execution, memory
access and write-back all in one clock cycle. First the PC
value is used as an address to index the instruction memory
which supplies a 32-bit value of the next instruction to be
executed. This instruction is then divided into the different
fields shown in Table 2.1. The instructions opcode field bits
[31-26] are sent to a control unit to determine the type of
instruction to execute. The type of instruction then determines
which control signals are to be asserted and what function the
ALU is to perform, thus decoding the instruction. The
instruction register address fields $rs bits [25 - 21], $rt bits [20
- 16], and $rd bits [15-11] are used to address the register file.
The register file supports two independent register reads and
one register write in one clock cycle. The register file reads in

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1, Issue 4, April 2014)

21

the requested addresses and outputs the data values contained
in these registers. These data values can then be operated on
by the ALU whose operation is determined by the control unit
to either compute a memory address (e.g. load or store),
compute arithmetic result (e.g. add, and or slt), or perform a
compare (e.g. branch). If the instruction decoded is arithmetic,
the ALU result must be written to a register. If the instruction
decoded is a load or a store, the ALU result is then used to
address the data memory. The final step writes the ALU result
or memory value back to the register file.

Figure 1. MIPS Single-cycle Processor

3. SYSTEM OVERVIEW

Mips Pipelined Processor Vhdl Implementation:

Once the MIPS single-cycle VHDL implementation was
completed, our next task was to pipeline the MIPS processor.
Pipelining, a standard feature in RISC processors, is a
technique used to improve both clock speed and overall
performance. Pipelining allows a processor to work on
different steps of the instruction at the same time, thus more
instruction can be executed in a shorter period of time. For
example in the VHDL MIPS single-cycle implementation
above, the datapath is divided into different modules, where
each module must wait for the previous one to finish before it
can execute, thereby completing one instruction in one long
clock cycle. When the MIPS processor is pipelined, during a
single clock cycle each one of those modules or stages is in
use at exactly the same time executing on different
instructions in parallel. Figure 2 shows an example of a MIPS
single-cycle non-pipelined (a.) versus a MIPS pipelined
implementation (b).The pipelined implementation executes
faster, keep in mind that both use the same hardware
components. The MIPS pipelined processor involves five
steps; the division of an instruction into five stages implies a

five-stage pipeline:
a. Instruction Fetch (IF): fetching the instruction from the
memory.
b. Instruction Decode (ID): reading the registers and decoding
the instruction.
c. Execution (EX): executing an operation or calculating an
address.
d. Data Memory (MEM): accessing the data memory.
e. Write Back (WB): writing the result into a register.

Figure 2a. Implementations.

Figure 2b. Single-cycle non-pipelined vs. pipelined execution

The key to pipelining the single-cycle

implementation of the MIPS processor is the introduction of
pipeline registers that are used to separate the datapath into the
five sections IF, ID, EX, MEM and WB. Pipeline registers are
used to store the values used by an instruction as it proceeds
through the subsequent stages. The MIPS pipelined registers
are labeled according to the stages they separate. (e.g. IF/ID,
ID/EX, EX/MEM, MEM/WB) Figure 3 shows and example of
a pipelined data path excluding the control unit and control
signal lines.

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1, Issue 4, April 2014)

22

To implement the MIPS pipelined processor, pipeline registers
are placed into the corresponding VHDL modules that
generate the input to the particular pipeline register. For
example, the Instruction Fetch component will generate the
32-bit instruction and the PC+4 value and store them into the
IF/ID pipeline register. When that instruction moves to the
Instruction Decode stages it extracts those saved values from
the IF/ID pipeline register. Appendix F contains the complete
VHDL code used to implement the MIPS pipelined processor
data path. Appendices G shows an example of MIPS processor
pipelined being simulated.

4. DESIGN & IMPLEMENTATION

Introduction to Model Simulator:

Project Flow: A project is a collection mechanism for an HDL
design under specification or test. Even though you don’t have
to use projects in ModelSim, they may ease interaction with
the tool and are useful for organizing files and specifying
simulation settings. The following diagram shows the basic
steps for simulating a design within a ModelSim project. As
you can see, the flow is similar to the basic simulation flow.
However, there are two important differences: You do not
have to create a working library in the project flow; it is done
for you automatically. Projects are persistent. In other words,
they will open every time you invoke ModelSimunless you
specifically close them.

Design Files for this Lesson: The sample design for
this lesson is a simple 8-bit, binary up-counter with an
associated testbench. The pathnames are as follows:
Verilog:

<install_dir>/examples/tutorials/verilog/basicSimulation/c
o unter.v and tcounter.v

VHDL:

<install_dir>/examples/tutorials/vhdl/basicSimulation/counte
r.vhd and tcounter.vhd

This lesson uses the Verilog files counter.v and
tcounter.v. If you have a VHDL license, use counter.vhd and
tcounter.vhd instead. Or, if you have a mixed license, feel free
to use the Verilog testbench with the VHDL counter or vice
versa.

Create the Working Design Library: Before you can simulate
a design, you must first create a library and compile the source
code into that library.
1. Create a new directory and copy the design files for this
lesson into it.

Start by creating a new directory for this exercise (in case
other users will be working with these lessons).

Verilog: Copy counter.v and tcounter.v files from
/<install_dir>/examples/tutorials/verilog/basicSimulation to
the new directory.

VHDL: Copy counter.vhd and tcounter.vhd files from
/<install_dir>/examples/tutorials/vhdl/basicSimulation to
the new directory.

2. Start ModelSim if necessary.

a. Type vsim at a UNIX shell prompt or use the ModelSim
icon in Windows. Upon opening ModelSim for the first time,
you will see the Welcome to ModelSim dialog. Click Close.
b. Select File > Change Directory and change to
the directory you created in step 1.

3. Create the working
library. a. Select File
> New > Library .
This opens a dialog where you specify physical and logical
names for the library (Figure 5). You can create a new library
or map to an existing library.

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1, Issue 4, April 2014)

23

Run the Simulation:

Now you will open the Wave window, add
signals to it, then run the simulation.

1. Open the Wave debugging
window. a. Enter view wave
at the command line

You can also use the View > Wave menu
selection to open a Wave window.

The Wave window is one of several windows
available for debugging. To see a list of the other
debugging windows, select the View menu. You
may need to move or resize the windows to your
liking. Window panes within the Main window can
be zoomed to occupy the entire Main window or
undocked to stand alone. For details, see Navigating
the Interface.

2. Add signals to the Wave window.

a. In the Workspace pane, select the sim tab.

b. Right-click test_counter to open a popup context menu.

c.

c. Select Add > To Wave > All items in region (Figure 5).

All signals in the design are added to the Wave window.
3. Run the simulation.
a. Click the Run icon in the Main or Wave window toolbar.
The simulation runs for 100 ns (the default simulation length)
and waves are drawn in the Wave window.

b. Enter run 500 at the VSIM> prompt in the Main

window. The simulation advances another 500 ns for a total of
600 ns (Figure 6).

c. Click the Run -All icon on the Main or Wave window
toolbar.The simulation continues running until you execute

a break command or it hits a statement in your code (e.g.,

a Verilog $stop statement) that halts the simulation.

Click the Break icon. The simulation stops running.

5. Results:

Simulation Results:

The work presented in this Thesis describes a functional
FPGA implementation design of a MIPS single-cycle and
pipelined processor designed using VHDL. The VHDL
designs of the MIPS processor were all simulated to ensure
that the processors were functional and operated just as
described by Patterson and Hennessy. The results show first
the instruction memory initialization, which is used to fill the
instruction memory with the instructions to be executed,
which are indexed by the program counter (PC). The second is
the actual 32-bit instruction represented using hexadecimal
numbers. The third is the PC value used to index the
instruction memory to retrieve an instruction. The next four
columns are the MIPS instruction’s mnemonic d columns are
the pseudo instructions using the actual values used during the
simulation.

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1, Issue 4, April 2014)

24

Synthesis Result:
The developed convolution project is simulated and verified
their functionality. Once the functional verification is done,
the RTL model is taken to the synthesis process using the
Xilinx ISE tool. In synthesis process, the RTL model will be
converted to the gate level net-list mapped to a specific
technology library. Here in this Spartan 3E family, many
different devices were available in the Xilinx ISE tool. The
target device is SPARTAN 2 FPGA kit. In order to synthesis
this design the device namedXC3S100Eas” has“ bee chosen
and the package as “TQ144” withthe device speed such as “5”.
RTL Schematic:
The RTL (Register Transfer Logic) can be viewed as black
box after synthesize of design is made. It shows the inputs and
outputs of the system. By double-clicking on the diagram we
can see gates, flip-flops and MUX. The above figure 8. Shows
the top level block diagram that contains the primary inputs
and outputs of the design. Device
Utilization Summary: This device utilization
includes the following.

a. Logic Utilization
b. Logic Distribution

c. Total Gate count for the Design
The device utilization summery is shown above in which its
gives the details of number of devices used from the available

devices and also represented in %. Hence as the result of the
synthesis process, the device utilization in the used device and
package is shown above. Timing Summary: Speed Grade: -3
Minimum period: 3.203ns (Maximum Frequency:
312.173MHz) Minimum input arrival time before clock:
145.587ns Maximum output required time after clock: 6.156ns
Maximum combinational path delay: 6.662ns In timing
summary, details regarding time period and frequency is
shown are approximate while synthesize. After place and
routing is over, we get the exact timing summary. Hence the
maximum operating frequency of this synthesized design is
given as 18.970 MHz and the minimum period as 52.719 ns
OFFSET IN is minimum input arrival time before clock and
OFFSET OUT is maximum output required time after clock.

Conclusion:

In this project it is observed that the RISC MIPS based
system is simulated using VHDL. The overall system is
simulated and synthesized, after synthesizing the system we
could get a statistical data about the number of input-output
buffers, the number of registers, number of flip-flops and
latches were used in the usage of FPGA tool. The modules
simulated are Accumulator, Buffer, Clock Generator,
Instruction Register, Multiplexer, Program Counter, Reset,
Control Logic Decoder, Arithmetic Logic Unit and the overall
system. Few instructions were executed and their timing
sequences were analyzed. It is found that an each instruction
taken 100ps.It shows that the different operations of the
instruction including the decoding and execution comes to
40ns in the overall system. Therefore we conclude that the
behavior shows, the system is working as RISC as instruction
will be executed within a single clock cycle.

REFERENCES

[1]. Bai-ZhongYing, Computer Organization, Science Press, 2000.11.
[2]. Wang-AiYing , Organization and Structure of Computer, Tsinghua

University Press, 2006.
[3]. Wang-YuanZhen, IBM-PC Macro Asm Program, Huazhong University

of Science and Technology Press, 1996.9.
[4]. MIPS Technologies, Inc. MIPS32™ Architecture For

ProgrammersVolume II: The MIPS32™ Instruction Set，June 9, 2003.
[5]. Zheng-WeiMin, Tang-ZhiZhong. Computer System Structure (The

second edition), Tsinghua University Press, 2006.

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1, Issue 4, April 2014)

25

[6]. Pan-Song, Huang-JiYe, SOPC Technology Utility Tutorial, Tsinghua
University Press, 2006.

[7]. MIPS32 4KTMProcessor Core Family Software User's Manual, MIPS
Technologies Inc.

[8]. Mo-JianKun, Gao-JianSheng,Computer Organization, Huazhong
University of Science and Technology Press, 1996.

[9]. Zhang-XiuJuan, Chen-XinHua, EDA Design and emulation Practice
[M]. BeiJing, Engine Industry Press. 2003.

[10]. "IEEE Standard of Binary Floating-Point Arithmetic" IEEE
Standard754, IEEE Computer Society, 1985.

[11]. Yi-Kui, Ding-YueHua, Application of AMCCS5933 Controller in PCI
BUS, DCABES2007, 20077.

