International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1sdue 4, April 2014)

Software Engineering Process Models & Trends

Gangadhar.G.H
Asst.Prof ,Dept Of CSE
BKEC, Basavakalyan
gangadharah@yahoo.com

Sneha.M
Asst.Prof ,Dept Of CSE
BKEC, Basavakalyan
mankare.sneha@gmail.com

Shivaraj P Patil
Psete & HOD, Dept of CSE

BKEC, Basalya

patilshivarajl6 @gmail.com

Abstract— Software is an important aspect of modern
society. It is seen in every day to day human usabl
technology from buying bread, driving car, washing
clothes to managing finances, communication regation
and generation of power and processing of informatin in
secured manner.Software engineering is the application of
a systematic, disciplined, quantifiable approach tothe
development, operation, and maintenance of softwe
that is, the application of engineering to software The

people who develop them are software engineers, s/w

developers and s/w programmers. S/W separated from
hardware in early 1950s and emerged as distinct and
independent technology. Following are s/w developme
practices but it may vary depending on the process:
« Requirements engineering
System analysis
High-level design/architecture
Low-level design
Coding
Integration
Design and code reviews
Testing
Maintenance
Project management
Configuration management

Index Terms—Deductive verification, scalable spiral
model, automatic programming, agile and plan driven
methods, Software verification

[. INTRODUCTION

A software development process is the process hghwirser
needs are translated into a software product. Tioeegs
involves translating user needs

into software requirements, transforming the sofewa
requirements into design, implementing the desigrcade,
testing the code, and sometimes installing and kthgcout
the software for operational use. A software preaesdel is a
simplified, abstracted description of a softwareedlepment
process. The primary purpose of a software prooesgel is

to determine the order of stages involved in soféwa

development and to establish the transition cdtefor
progressing from one stage to the next (Boehm, M88).

11

Process models have begun to be characterizegasiplen
or agile. The plan-driven models have an implisisiamption
that a good deal of information about requiremeraa be
obtained up front and that information is fairhalsie. Plan-
driven models are also considered more suitables&bety-
and mission-critical systems because of their emighan
defect prevention and elimination. Some exampleplah-
driven methodologies are the Personal Softwared@mahe
Rational Unified Process,and Cleanroom
Engineering, agile models are considered to beebstiited
for projects in which a great deal of change idcgdted.
Some examples of agile methodologies are the Extrem
Programming (XP) (Beck, 2000), FDD

Software I ntensive Systems (SIS): Software intensive systems
(SIS) have become the foundation of virtually evergdern

technology.
Software System
engineering :>©<:: engineering

Fig 1:Both s/w and system processes are affecting the system

* Increasing integration of software engineering apstem
engineering activities

* Increasing emphasis on users and end-value

« Increasing SIS criticality and dependability

« Increasing need to manage rapid change

« Increasing project/product globalization and need f
interoperability

« Increasing size and complexity

* Increasing software “autonomy”

Software engineering Process Activities:
Software process means organizing structured sattofities
to develop software systems. It involves followadivites
» Specification — defining what the system should do;
» Design and implementation — defining the
organization of the system and implementing the
system;
» Validation — checking that it does what the custome
wants;
» Evolution — changing the system in response to
changing customer needs.

Software

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1sdue 4, April 2014)

Software Process Model:

It is an abstract and simplified description of teafre
development process.It presents a description mbaeess.Its
purpose is to determine the order of stages indolie
developmentFollowing are the activites in the
process:specifying a data model,designing a userfate and
the ordering of these activities,etc.

Types of software processes:

The plan-driven models have an implicit assumption that a
good deal of information about requirements carolbined
up front and that information is fairly stable. A&sresult,
creating a plan for the project to follow is adika A long-
standing tenet of software engineering is that ltreger a
defect remains in a product, the more

expensive it is to remove it. cost of product depetent can
be minimized by creating detailed plans and by tontng
and inspecting architecture and design documergsa fesult
of these activities, there will be significant cosavings
because defects will be removed or prevented. &aen
models can be summarized as “Do it right the finste.”
These models are very appropriate for projectshichwthere
is not

a great deal of requirements and/or technology @ésn
anticipated throughout the development cycle. Mlidven
models are also considered more suitable for safatyl
mission-critical systems because of their emphasislefect
prevention and elimination.

Requirements
definition
System and

software design

Implementation

and unit testing

Integration and

system testing

’ [Operation and

maintenance

Fig: Waterfall model

» There are separate identified phases in the wdterfa
model:

Requirements analysis and definition

System and software design

Implementation and unit testing

Integration and system testing

Operation and maintenance

The agilemodels are considered to be better suited for project€volutionary development:

in which a great deal of change is anticipated.aBse of the
inevitable change, creating a detailed plan woutd he
worthwhile because it will only change. Spendingngficant
amounts of time creating and inspecting an architecand
detailed design for the whole project is similambyt advisable;
it will only change as well. The methodologies bé tagile
model focus on spending a limited amount of timglamning
and requirements gathering early in the process randh
more time planning and gathering requirements foals
iterations throughout the entire lifecycle of the

project.

Types of Software process models:

* The waterfall model

Plan-driven model. Separate and distinct
phases of specification and development.

Waterfall model

12

Its objective is to work with customers and to e@eoh final
system from an initial outline specification.It sihd start with
well understood requirements and add new features a
mentioned by customers

Concurrent
activities
Fe- P ; —_— Imitial
‘. _\'FCU'FILE‘IDI"I WErSn
k L —
]
Qutine Deed —p | Intermediate [h
deseription Sl Development versons
If_
k. Final
| Validaticn ! — riian

Process Iteration:
 Incremental development
» Spiral modeL

Spiral model: Process is represented as spiral rather than
sequence of activities with backtracking.Each ldapthe
spiral represent a phase in the process.

International Journal of Ethics in Engineering & Management Education

Website: www.ijeee.in (ISSN: 2348-4748, Volume 1sdue 4, April 2014)

Determine objectives, =le=g
denbvsand ~— mﬁﬁr&
e Rk
/ P e L N
4 o~ Rk ™ 3
ri - I \
/ / / 7 : m'::h) "3«"’*’ opera-
’Fj !// / _ . _"-" \w3 N, tional \
< - Frototype 2 prosofpe
f / / ik \ \ \J
| f [[ey] disal ‘ | \
4 4 1| 3 1]
| | ‘,\ Requirementsplan | | Simudatiors, models benchmarks ’
if ——) |
\ \ | Uedepin feoncet e ey f
\ \ \, Openticn /g 4y B |
\ \ \ g2 [bodat |]
\ e A Teqicements / Product / e
\ \, = A= / duign Dmllhd /
S po
\\ e plan ulidﬂn‘// Code /
S =l
. o T /'/
o . ind test plan ____.r"' g >
Flan nant phase e A mL/
Senice "t~ Develop, verdy
o next-level produsct

Il. Software Engineering Trends:

METHODS

PROCESS

Fig 5: Trendsin Software engg

Software Specification: The process of establishing what a.SE Trends—Process:

services are required and the constraints on tletesys

operation and development.

1.Requirements Engineering

To improve the manner in which requirements aredef]
the software engineering community will likely ingphent

Agility
Adaptability
Collaboration
Communication
ROI

b.SE Trends—Methods:

three distinct sub-processes as RE is conducted7Gl In RE
improved knowledge acquisition and knowledge slwarin In design
that allows more complete understanding of appticat In languages
domain constraints and stakeholder needs In testing
greater emphasis on iteration as requirements efined! In SCM/SQA

more effective communication and coordination tcbkst

enable all stakeholders to collaborate effectively

/ Requiraments
eliatatian and
analyss

(" Fansibilit
Vo shudy

F'_'aubi“l'r
mpart

f Le=quirments N

| spechication

N —
{ Reguirements

validaban
Usear and system
rejuirements

System
madels

Requirernents
| domument

c.SE Trends—Tools:
Project mgmt.

Modeling
Programming
Testing
Maintenance
SCM

SEEs

The growing development of dependable softwareitsasvn
importance. Formal methods in s/w engg is an emgrgi
application of intelligent systems. Deductive s/erification
is a vital technology in formal techniques. Subsatquo this,
is s/w synthesizing which is an important base neple of
formal methods. Software verification: It is a fahtechnique
for reasoning about properties of programs. It us@saputer
assistance for proof search book keeping. It proadidity by
deduction in logic calculususe.Verified s/w corsisbf
programs that are proved error free. Deductivev@frification
is a formal technique for reasoning about properta
programs that has been around 40 years. Earlidicagion of
algorithms in academic languages was done, novicagtion
tools support programming languages like java, Eé#lier,
verification tools used to be stand alone applicetiused after

13

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1sdue 4, April 2014)

years of training. Now, tools are there requiringnimal
training to use. Most importantly, deductive vexétiion tools
are used as base technology in formal s/w verifinaand
automatic test generation as well. In contrastaticsanalysis

packages, data access and mining tools and PDAs are
technologies affecting usability and cost effectolallenges
of this trend is requirements are not prespecifietlemerged
which are not compatible with past process likeunegnent

and model checking, can model the semantics ofetargdriven sequential water fall process models andmébr
programming without abstracting from unbounded datgprogramming calculi.

structures or programming constructs. The logicdductive
verification are least expensive so it can be fdmed and
proved far reaching target properties. A recemtdrs to insist
on automation but to accept approximate resultsrasnwith
static analysis and model checking. In logical ntiode of
programming languages and their semantics, twooaghes
exist. In the first, target programs appear as rs¢pa
syntactical category embedded in logical expressidoare
logic is the best known. Logical rules that chazeze the
derivability of those formulas that contain progsaraflect the
target programming language’s operational semaniicshe
second, target language syntax and semantics acelesh as
theories. It involves formalizing data structurekel sets,
functions, lists, tuples and records.

One major trend is that verification tools attertgptcombine
formal verification, automatic test generation aamgtomatic
bug finding into a uniform framework that is intaggd into
standard software development platforms like eelipEhe
forces behind them are formal verification is tamiled and
they are at the source code.

TRENDS:

1. System engineering and software engineeringgiated
together

2. Rapid change

3. Increased complex systems of systems

4. More demand for COTS, reuse and legacy SIS atiegn

5. Need for dependability and increased SIS clitica

Many trends have been the reason for evolvemesysiem
engineering and software engineering as large stiqlie@nd
independent processes systems like ships, railroad

1.Firstly sys eng begun to determine configuringvafious
h/w components into physical systems like shipgsoeds or
defense systems. After this functional componentsl a
information requirements were specified then exkrar
internal contracts are defined in sequence to p®dihe
components. Secondly, s/w engineering is influenbgda
highly formal and mathematical approaches for gpeag
s/w components and a reductionalist approach foividg
computer s/w programs that correctly implementednéd
specifications. Thirdly, in places like governmesgctors,
specification & standards were well placed and veifficult
change so “purchasing agent” concept was followéérain
requirements were sequentially specified, contragisre
established, formulated and implementing of sohgiaas
done and requirements were used for
solutions.

2. User-or-organization desire is to have technpldigat
adopts to people rather than viceOversa.Enterpsiggoort

14

3. Other challenge is that dependability is not pojority for
s/lw products .scaling up and integrating s/w andtesy
dependability so that they cope with future trenHallenges
like rapid change and agility, globalization, compbkystem of
system and COTS/legacy integration is big hurdbkariples
are AT&T telephone n/w's where high dependability i
achieved.

4. Rapid change increases the priority of develpgipeed vs
cost in capitalizing on market window .Hewlett Paks
initiative is one of the example to reduce prodiig s/w
development times from 48 to 12 months, changeiied by
trends like Gordan Moore’s law plus continuing nefed
product difference and global connectivity accaksaripple
effects of technology, market place and technoldwpnges.

5. Globalization provides major economies of scaled n/w
economies that drive organizations product and gu®c
strategies. A standard based infrastructure isné&atefor
effective global collaboration; example is low atop rate of
mire individual/masculine/short term US culturefsy CMM
by organizations in the more collective/femininafoterm
that culture.

6. System and software development processes lglveisks

of inadequate interoperability with other systerBgftware
intensive systems risks have following trends: #&ition
management and staffing, requirements/architecture
feasibility, achievable software schedules, supjtitegration,
adoption to rapid change, system and s/w qualitstofa
achievability, product integration and electronjagtade. To
keep software intensive systems of systems deigtadbifrom
change of traffic, organize development into plariveh
increments(to keep stable from changes).

7.Infrastructure S/w developers continue to sperwbtnof
their time programming and application s/w devetsppend
in assessing, tailoring and integrating commermaiathe shelf
(COTS) products. These are challenging to integadethey
are hard to debug and incompatible with each otfgren
source s/w (organization’s reused or legacy softjvas less
opaque. But this to have problems with interopditgbaind
continuing evolution. It put constraints on new lgggiions
incremental development. COTS, open source, reused,
legacy s/w and h/w will have shortfalls in deperitityband

acceptance-tasteroperability. IT can be overcome by increasmugtomer

and enterprise architecture initiatives .

8.In 27" century system and s/w development and evolution,
The common modes are business model based user

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1sdue 4, April 2014)

programming, hardware and software product liness Schedule Pressure. We often make these aggressive
development of unprecedented capabilities, netwagktric commitments because of the
systems of systems. Exploratory development presessll intensity of the people asking us for commitmenselems that
continue to be used in mainstream organizationsiantew every product is late before it's even started rgveature is
areas like nanotechnology, advanced biotechnologg a critical or the business will fold. Products needbe created
robotics, virtual reality and co-operative agergdzhsystems. and updated at a constant, rapid pace lest commgsetit
Business model based user programming addressetftbtn take over the business.
produce more and more s/w capabilities by enaltliegn to
be produced directly by users like spread sheegrpms, CONCLUSION: In this paper we emphasized on recent
computer aided design and manufacturing and websitieends and methods deployed in software enginestiegms,
development and evolution. Hardware and softwaamyrt by taking into account deductive verification, ented spiral
lines includes product lines for transportation,model and automatic programming. Future works aaddne
communications, medical, construction, businessvices, on improving the testing practice on emerging $pinadels
public services and information infrastructure. Wetk and also putting efforts in synchronizing systerd aaftware
centric systems of systems are highly softwarensite and processes. Challenges faced by software produeiamwent
need to be robust, scalable and evolvable in flexib like varying requirements, Scheduled pressure ahéduled
optimism can be worken on it.

Ill. Software Engineering Challenges: REFERENCES
* Tractable Medium. [1]. Boshm, A spira(l:model for(;oﬂvifg’gs(;egilo;)zment and
H] enhancement, Computer ay s —(2.
Quite often programmers are also. aSked.tF) fix har_dW [2]. Beck, Extreme programming explained, Addison Wesley
product problems because people think that it eaphr to fix Reading, MA, 1999.
the problems in the (tractable) software than tbise-design [3l. A. Fuggetta, “Software process: A roadmap,” Theuret
and re-manufacture physical parts. This presenfsva® " ofsoftware engineerinlg, Ab Finléelstein (Editor), ﬁ@ress,ZOOCf)t.
; ; ; ; |mgte 4]. L. Huang, A Vvalue-base process achieving software

engineers V.Vlth the need to des@n and coding cls . n at dependability,Proc Software Process, Workshop 2012y,
the last minute. The software industry has beeindryo 2005,
formulate a sort of scientific/mathematical basis ftself. [5]. M. Paulk, C. Weber, B. Curtis, and M. Chrissis, Thapability
Formal notations have been proposed to specifyogram; Maturity Model, Addison Wesley, Reading, MA, 1994.
mathematical proofs have been defined using thesmal [6]. Y. Yang, B. Boehm, and D. Port, A contextualizestigtof

. . . . COTS-based e-service projects, Proc Software Psoces
notations. The .software community is also estabigsh Workshop 2005, Springer, New York, 2005,
analysis and design [7]. Y. Yang, J. Bhuta, D. Port, and B. Boehm, Valuecdagrocesses
patterns. for COTS-based applications, IEEE Software (Julygést 2005),

54-62.
. . . . 8]. Intelligent systems and formal methods in softwemrgineering,b:

* Changing requirements. Adapting for hardware changes is 18 Bemr?ard Bchert. e oby
only one source of requirements churn for softweargineers. [9]. B.Boehm, AW. Brown, V. Basili, and R. Turner, Gpi
Unfortunately, requirements changes come from many acquisition of software-intensive systems of syste@rossTalk

sources. It is often very hard for customers toresp exactly (May 2004), 4-9.

what they want in a product .Requirements analystg not
understand the product domain as completely asribey to
early in the product lifecycle. As a result, thealgsts might
not know the right questions to ask the customeglimt all
their requirements .Lastly; the product domain che
constantly changing during the course of a product
development cycle. New technology becomes available
Competitors release new products that have featthras
weren't thought of. Innovators think

of wonderful new ideas that will make the producbren
competitive.

» Schedule Optimism. Software engineers are an optimistic
crew. In most organizations, it is the softwareiregrs who
estimate how long it will take to develop a produidt matter
how many times we've taken longer than we thoughthie
past, we still believe “Next time, things will go ome
smoothly. We know so much more now”

15

