

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1, Issue 4, April 2014)

11

Software Engineering Process Models & Trends

Gangadhar.G.H Sneha.M Shivaraj P Patil
Asst.Prof ,Dept Of CSE Asst.Prof ,Dept Of CSE Professor & HOD, Dept of CSE
BKEC, Basavakalyan BKEC, Basavakalyan BKEC, Basavakalyan

gangadharah@yahoo.com mankare.sneha@gmail.com patilshivaraj16@gmail.com

Abstract— Software is an important aspect of modern
society. It is seen in every day to day human usable
technology from buying bread, driving car, washing
clothes to managing finances, communication regulation
and generation of power and processing of information in
secured manner. Software engineering is the application of
a systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of software;
that is, the application of engineering to software. The
people who develop them are software engineers, s/w
developers and s/w programmers. S/W separated from
hardware in early 1950s and emerged as distinct and
independent technology. Following are s/w development
practices but it may vary depending on the process:

• Requirements engineering
• System analysis
• High-level design/architecture
• Low-level design
• Coding
• Integration
• Design and code reviews
• Testing
• Maintenance
• Project management
• Configuration management

 Index Terms—Deductive verification, scalable spiral

model, automatic programming, agile and plan driven
methods, Software verification

I. INTRODUCTION

A software development process is the process by which user
needs are translated into a software product. The process
involves translating user needs
into software requirements, transforming the software
requirements into design, implementing the design in code,
testing the code, and sometimes installing and checking out
the software for operational use. A software process model is a
simplified, abstracted description of a software development
process. The primary purpose of a software process model is
to determine the order of stages involved in software
development and to establish the transition criteria for
progressing from one stage to the next (Boehm, May 1988).

Process models have begun to be characterized as plan-driven
or agile. The plan-driven models have an implicit assumption
that a good deal of information about requirements can be
obtained up front and that information is fairly stable. Plan-
driven models are also considered more suitable for safety-
and mission-critical systems because of their emphasis on
defect prevention and elimination. Some examples of plan-
driven methodologies are the Personal Software Process, the
Rational Unified Process,and Cleanroom Software
Engineering, agile models are considered to be better suited
for projects in which a great deal of change is anticipated.
Some examples of agile methodologies are the Extreme
Programming (XP) (Beck, 2000), FDD

Software Intensive Systems (SIS): Software intensive systems
(SIS) have become the foundation of virtually every modern
technology.

Fig 1:Both s/w and system processes are affecting the system

• Increasing integration of software engineering and system

engineering activities
• Increasing emphasis on users and end-value
• Increasing SIS criticality and dependability
• Increasing need to manage rapid change
• Increasing project/product globalization and need for

interoperability
• Increasing size and complexity
• Increasing software “autonomy”

Software engineering Process Activities:
Software process means organizing structured set of activities
to develop software systems. It involves following activites

� Specification – defining what the system should do;
� Design and implementation – defining the

organization of the system and implementing the
system;

� Validation – checking that it does what the customer
wants;

� Evolution – changing the system in response to
changing customer needs.

Software
engineering

System
engineering

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1, Issue 4, April 2014)

12

Software Process Model:

It is an abstract and simplified description of software
development process.It presents a description of a process.Its
purpose is to determine the order of stages involved in
developmentFollowing are the activities in the
process:specifying a data model,designing a user interface and
the ordering of these activities,etc.
Types of software processes:
The plan-driven models have an implicit assumption that a
good deal of information about requirements can be obtained
up front and that information is fairly stable. As a result,
creating a plan for the project to follow is advisable. A long-
standing tenet of software engineering is that the longer a
defect remains in a product, the more
expensive it is to remove it. cost of product development can
be minimized by creating detailed plans and by constructing
and inspecting architecture and design documents. As a result
of these activities, there will be significant cost savings
because defects will be removed or prevented. Plan-driven
models can be summarized as “Do it right the first time.”
These models are very appropriate for projects in which there
is not
a great deal of requirements and/or technology changes
anticipated throughout the development cycle. Plan-driven
models are also considered more suitable for safety- and
mission-critical systems because of their emphasis on defect
prevention and elimination.
The agile models are considered to be better suited for projects
in which a great deal of change is anticipated. Because of the
inevitable change, creating a detailed plan would not be
worthwhile because it will only change. Spending significant
amounts of time creating and inspecting an architecture and
detailed design for the whole project is similarly not advisable;
it will only change as well. The methodologies of the agile
model focus on spending a limited amount of time on planning
and requirements gathering early in the process and much
more time planning and gathering requirements for small
iterations throughout the entire lifecycle of the
project.

Types of Software process models:
• The waterfall model

– Plan-driven model. Separate and distinct
phases of specification and development.

 Waterfall model

Fig: Waterfall model

• There are separate identified phases in the waterfall

model:
– Requirements analysis and definition
– System and software design
– Implementation and unit testing
– Integration and system testing
– Operation and maintenance

Evolutionary development:
Its objective is to work with customers and to evolve a final
system from an initial outline specification.It should start with
well understood requirements and add new features as
mentioned by customers

Process Iteration:
• Incremental development
• Spiral modeL

Spiral model: Process is represented as spiral rather than
sequence of activities with backtracking.Each loop in the
spiral represent a phase in the process.

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1, Issue 4, April 2014)

13

Software Specification: The process of establishing what
services are required and the constraints on the system’s
operation and development.

1.Requirements Engineering
• To improve the manner in which requirements aredefined,

the software engineering community will likely implement
three distinct sub-processes as RE is conducted [Gli07]

• improved knowledge acquisition and knowledge sharing
that allows more complete understanding of application
domain constraints and stakeholder needs

• greater emphasis on iteration as requirements are defined
more effective communication and coordination tools that
enable all stakeholders to collaborate effectively

II. Software Engineering Trends:

Fig 5: Trends in Software engg

a.SE Trends—Process:

Agility
Adaptability
Collaboration
Communication
ROI

b.SE Trends—Methods:
In RE
In design
In languages
In testing
In SCM/SQA

c.SE Trends—Tools:
Project mgmt.
Modeling
Programming
Testing
Maintenance
SCM
SEEs

The growing development of dependable software has its own
importance. Formal methods in s/w engg is an emerging
application of intelligent systems. Deductive s/w verification
is a vital technology in formal techniques. Subsequent to this,
is s/w synthesizing which is an important base technique of
formal methods. Software verification: It is a formal technique
for reasoning about properties of programs. It uses computer
assistance for proof search book keeping. It proves validity by
deduction in logic calculususe.Verified s/w consists of
programs that are proved error free. Deductive s/w verification
is a formal technique for reasoning about properties of
programs that has been around 40 years. Earlier verification of
algorithms in academic languages was done, now verification
tools support programming languages like java, C#. Earlier,
verification tools used to be stand alone applications used after

TOOLS

METHODS

PROCESS

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1, Issue 4, April 2014)

14

years of training. Now, tools are there requiring minimal
training to use. Most importantly, deductive verification tools
are used as base technology in formal s/w verification and
automatic test generation as well. In contrast to static analysis
and model checking, can model the semantics of target
programming without abstracting from unbounded data
structures or programming constructs. The logic In deductive
verification are least expensive so it can be formalized and
proved far reaching target properties. A recent trend is to insist
on automation but to accept approximate results contrast with
static analysis and model checking. In logical modeling of
programming languages and their semantics, two approaches
exist. In the first, target programs appear as separate
syntactical category embedded in logical expression. Hoare
logic is the best known. Logical rules that characterize the
derivability of those formulas that contain programs reflect the
target programming language’s operational semantics. In the
second, target language syntax and semantics are encoded as
theories. It involves formalizing data structures like sets,
functions, lists, tuples and records.
One major trend is that verification tools attempt to combine
formal verification, automatic test generation and automatic
bug finding into a uniform framework that is integrated into
standard software development platforms like eclipse. The
forces behind them are formal verification is too limited and
they are at the source code.

TRENDS:
1. System engineering and software engineering integrated
together
2. Rapid change
3. Increased complex systems of systems
4. More demand for COTS, reuse and legacy SIS integration
5. Need for dependability and increased SIS criticality
Many trends have been the reason for evolvement of system
engineering and software engineering as large sequential and
independent processes systems like ships, railroad

1.Firstly sys eng begun to determine configuring of various
h/w components into physical systems like ships, railroads or
defense systems. After this functional components and
information requirements were specified then external or
internal contracts are defined in sequence to produce the
components. Secondly, s/w engineering is influenced by a
highly formal and mathematical approaches for specifying
s/w components and a reductionalist approach for deriving
computer s/w programs that correctly implemented formal
specifications. Thirdly, in places like government sectors,
specification & standards were well placed and were difficult
change so “purchasing agent” concept was followed wherein
requirements were sequentially specified, contracts were
established, formulated and implementing of solutions was
done and requirements were used for acceptance-test
solutions.

2. User-or-organization desire is to have technology that
adopts to people rather than vice0versa.Enterprise support

packages, data access and mining tools and PDAs are
technologies affecting usability and cost effective challenges
of this trend is requirements are not prespecified but emerged
which are not compatible with past process like requirement
driven sequential water fall process models and formal
programming calculi.

3. Other challenge is that dependability is not top priority for
s/w products .scaling up and integrating s/w and system
dependability so that they cope with future trends challenges
like rapid change and agility, globalization, complex system of
system and COTS/legacy integration is big hurdle. Examples
are AT&T telephone n/w’s where high dependability is
achieved.

4. Rapid change increases the priority of developing speed vs
cost in capitalizing on market window .Hewlett Packard’s
initiative is one of the example to reduce product line s/w
development times from 48 to 12 months, change is driven by
trends like Gordan Moore’s law plus continuing need for
product difference and global connectivity accelerates ripple
effects of technology, market place and technology changes.

5. Globalization provides major economies of scale and n/w
economies that drive organizations product and process
strategies. A standard based infrastructure is essential for
effective global collaboration; example is low adoption rate of
mire individual/masculine/short term US culture’s s/w CMM
by organizations in the more collective/feminine/long term
that culture.

6. System and software development processes have high risks
of inadequate interoperability with other systems. Software
intensive systems risks have following trends: acquisition
management and staffing, requirements/architecture
feasibility, achievable software schedules, supplier integration,
adoption to rapid change, system and s/w quality factor
achievability, product integration and electronic upgrade. To
keep software intensive systems of systems destabilized from
change of traffic, organize development into plan driven
increments(to keep stable from changes).

7.Infrastructure S/w developers continue to spend most of
their time programming and application s/w developers spend
in assessing, tailoring and integrating commercial off the shelf
(COTS) products. These are challenging to integrate, as they
are hard to debug and incompatible with each other. Open
source s/w (organization’s reused or legacy software) is less
opaque. But this to have problems with interoperability and
continuing evolution. It put constraints on new applications
incremental development. COTS, open source, reused, and
legacy s/w and h/w will have shortfalls in dependability and
interoperability. IT can be overcome by increasing customer
and enterprise architecture initiatives .

8.In 21st century system and s/w development and evolution,
The common modes are business model based user

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1, Issue 4, April 2014)

15

programming, hardware and software product lines,
development of unprecedented capabilities, network centric
systems of systems. Exploratory development processes will
continue to be used in mainstream organizations and in new
areas like nanotechnology, advanced biotechnology and
robotics, virtual reality and co-operative agent based systems.
Business model based user programming address the need to
produce more and more s/w capabilities by enabling them to
be produced directly by users like spread sheet programs,
computer aided design and manufacturing and website
development and evolution. Hardware and software product
lines includes product lines for transportation,
communications, medical, construction, business services,
public services and information infrastructure. Network
centric systems of systems are highly software intensive and
need to be robust, scalable and evolvable in flexible.

III. Software Engineering Challenges:

• Tractable Medium.
Quite often programmers are also asked to fix hardware
product problems because people think that it is cheaper to fix
the problems in the (tractable) software than it is to re-design
and re-manufacture physical parts. This presents software
engineers with the need to design and coding changes, often at
the last minute. The software industry has been trying to
formulate a sort of scientific/mathematical basis for itself.
Formal notations have been proposed to specify a program;
mathematical proofs have been defined using these formal
notations. The software community is also establishing
analysis and design
patterns.

• Changing requirements. Adapting for hardware changes is
only one source of requirements churn for software engineers.
Unfortunately, requirements changes come from many
sources. It is often very hard for customers to express exactly
what they want in a product .Requirements analysts may not
understand the product domain as completely as they need to
early in the product lifecycle. As a result, the analysts might
not know the right questions to ask the customer to elicit all
their requirements .Lastly; the product domain can be
constantly changing during the course of a product
development cycle. New technology becomes available.
Competitors release new products that have features that
weren’t thought of. Innovators think
of wonderful new ideas that will make the product more
competitive.

• Schedule Optimism. Software engineers are an optimistic
crew. In most organizations, it is the software engineers who
estimate how long it will take to develop a product. No matter
how many times we’ve taken longer than we thought in the
past, we still believe “Next time, things will go more
smoothly. We know so much more now”

• Schedule Pressure. We often make these aggressive
commitments because of the
intensity of the people asking us for commitment. It seems that
every product is late before it’s even started, every feature is
critical or the business will fold. Products need to be created
and updated at a constant, rapid pace lest competitors
take over the business.

CONCLUSION: In this paper we emphasized on recent
trends and methods deployed in software engineering streams,
by taking into account deductive verification, enhanced spiral
model and automatic programming. Future works can be done
on improving the testing practice on emerging spiral models
and also putting efforts in synchronizing system and software
processes. Challenges faced by software product development
like varying requirements, Scheduled pressure and scheduled
optimism can be worken on it.

REFERENCES

[1]. Boehm, A spiral model for software development and
enhancement, Computer (May 1988), 61–72.

[2]. Beck, Extreme programming explained, Addison Wesley,
Reading, MA, 1999.

[3]. A. Fuggetta, “Software process: A roadmap,” The future
ofsoftware engineering, A. Finkelstein (Editor), ACM Press,2000.

[4]. L. Huang, A value-based process achieving software
dependability,Proc Software Process, Workshop 2005, May
2005.

[5]. M. Paulk, C. Weber, B. Curtis, and M. Chrissis, The Capability
Maturity Model, Addison Wesley, Reading, MA, 1994.

[6]. Y. Yang, B. Boehm, and D. Port, A contextualized study of
COTS-based e-service projects, Proc Software Process
Workshop 2005, Springer, New York, 2005,

[7]. Y. Yang, J. Bhuta, D. Port, and B. Boehm, Value-based processes
for COTS-based applications, IEEE Software (July/August 2005),
54–62.

[8]. Intelligent systems and formal methods in software engineering,by
Bernhard Beckert.

[9]. B. Boehm, A.W. Brown, V. Basili, and R. Turner, Spiral
acquisition of software-intensive systems of systems, CrossTalk
(May 2004), 4–9.

