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Abstract: The effect of boundary layer flow through porous medium 
(Nield model [23]) over a nonlinearly stretching sheet has been 
investigated. The nonlinear partial derivatives are converted into 
ordinary differential equations by using similarity transformations. 
The resulting boundary layer equation of motion is solved 
numerically using fourth order Runge –Kutta method with efficient 
shooting technique. A comparison with previously published results, 
i.e. of Cortell [12] of the problem shows an excellent agreement, which 
is illustrated with tables. 
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1. INTRODUCTION: 
 

The problem of boundary layer flow driven by a 
continuously moving non-linear stretching surface in a 
saturated porous medium may find applications to polymer 
technology where one deals with stretching of plastic sheets.  
The practical application include drawing of a polymer 
sheet or filament extruded continuously from a die through 
a quiescent fluid, the cooling of a metallic plate in a cooling 
bath, the aerodynamic extrusion of plastic sheet, and the 
continuous casting, rolling and annealing and tinning of 
copper wires. Specifically, these include polymer melts and 
polymer solutions, heat treated materials traveling between 
a feed roll and a wind-up roll or materials manufactured by 
extrusion, glass–fiber and paper production, cooling of 
metallic sheets or electronic chips, crystal growing and 
many other Processes.  

Vajravelu[1] and Cortell[2,6] have studied the fluid  
flow over a nonlinearly stretching sheet. Abas and Hayat[3] 
investigated the  Radiation effects on MHD flow  in  porous    
space .   Prasad et al. [4] have studied non-darcy forced 
convective heat transfer in a  viscoelastic fluid over a non-
isothermal stretching sheet.  Raptis and Perdikis[5] worked 
out the flow over a non-linear  stretching sheet in the 
presence of  a chemical reaction and magnetic field. 
Pantokrtoras[7] Comments on perturbation anaysis of 
radiative effect on free convection  low in porous medium in 
the presence of pressure work and  viscous  dissipation. 
Hayat et al [8] MHD flow of a micropolar fluid near a 
tagnation- pont towards  a non-linear stretching  surface. 
Sujit  Kumar Khan et al.[9], considered the study of  visco-
elastic  MHD flow, heat and mass transfer over a porous 
stretching sheet with   dissipation of energy  and  stress 
work..Rashad[10] have shown the perturbation analysis of 

radiative effect on free convection flows in porous medium 
in the presence of pressure work and viscous dissipation 
Further Nield[11] commented about considering viscous 
dissipation term in energy equation, which according to 
should be the combination of the following two terms, i.e 

2
u

cp y

υ  ∂
 ∂ 

and
2

'

u

cpk

υ
, which has been incorporated in this 

paper.  
All the above investigators restrict their analysis 

to viscous and visco-elastic  flow and heat transfer over a 
nonlinear stretching sheet. In view of the wide 
applications, We contemplate to consider the study of 
flow and heat transfer in boundary layer viscous fluid 
flow over a non-linear stretching sheet in fluid saturated 
porous medium, and analyzed the effects of Prandtl 
number, thermal radiation, Eckert number and porosity 
parameter on flow and heat transfer. The combined 
effects of all the above-mentioned parameters have not 
been considered so far, in the literature, which makes the 
present problem unique. 

2. BASIC EQUATION FOR THE FLOW: 
 

Considering an incompressible viscous fluid past a flat 
stretching sheet coinciding with the plane y=0, the flow 
being confined to y > 0. The steady two-dimensional 
boundary-layer equations with the usual notations are 

0,
u v

x y

∂ ∂+ =
∂ ∂

                                                    (1)                                                              

2

2 '

u u u
u u

x y y k

υν υ∂ ∂ ∂+ = −
∂ ∂ ∂

                           (2) 

u and v are the velocity components of the fluid in the x and 
y directions, respectively, and υ  is the kinematic viscosity, 

k′  is the permeability of the porous medium. 
The corresponding boundary conditions are,  

      ( )
1/3

4/3
, 0 0,w xu x v at y

L

υ= = =        (3)   

                                                                                                          
             0 .u as y→ → ∞                            (4)                                                                                                                          
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where L is the  characteristic length, defining new 
similarity variables 

1/3 '
1/3 ' 1/3

2/3 4/3 2/3

2
, ( ),

3

x f f
y u x f v x

L L L

υ υ ηη η
−

− −= = = − ,                          

                                                                                            (5) 
and substituting the above  into Eq ( 2 ) gives   

                  

  ''' '' ' 2 '
13 2 ( ) 0,f ff f k f+ − + =                                   (6) 

    
The  similarity variable  and fη  is the dimensionless 

stream function and. 
4

3
1

3
k L

k
= −

′
 is the porous parameter. 

The boundary conditions in Eq (3) and (4) become 

 '0 1 0f f at η= = =                        

(7) ' 0 .f as η→ → ∞                                             (8)                                                                        

The shear stress at the stretched surface is defined as 

     ( )w

u
w

y
τ µ ∂=

∂
                                                     (9) 

and ,it is obvious from Eq.(5) and (9 )  that 

               ''
2

(0).w f
L

υτ µ=                                    (10) 

 
Where µ  is the viscosity of the fluid and the solution 

for problems (6)-(8) is depicted in fig 1.  
 

3. HEAT TRANSFER ANALYSES AND SIMILARITY 
SOLUTIONS:  

 
The energy equation with thermal radiation and viscous 
dissipation in presence of saturated porous medium, is (as 
given by   Pantokratoras [11] )  given by              

2 2

'

2
2

1 rqT T u u
u v

x y cp y cp y cpk
T

y
υ υα

ρ
  ∂∂ ∂ ∂ + = − + +  ∂ ∂ ∂ ∂   

∂
∂

                                        

(11)                                                                                                                                                  
Where T is the fluid temperature, α  is the thermal 
diffusivity, ρ  is the density, cp  is the specific heat of the 

fluid at constant pressure and rq  is the radioactive heat 

flux, andk′  is the permeability of the porous medium. 
   Using the Rosseland[10] approximation for radiation the 
radiative heat flux is                      

    
4*

*

4
,

3r

T
q

k y

σ ∂= −
∂

                                             (12) 

Where  *σ  and *k  are the Stefan-Boltzmann constant and 
the mean absorption co-efficient, respectively. It is assumed 

that the temperature differences 4T  in a Taylor series about 

T∞ and neglecting higher order terms to obtain, 

    4 3 44 3 .T T T T∞ ∞≅ −                                             (13)                                                                                                  

by  Eqs.(12) and (13), Eq.(11)  reduces to           
* 3 2

2 2
* 2 '

16
( ) ( )

3

TT T T u
u v u

x y cpk y cp y cpk

σ υ υα
ρ

∞∂ ∂ ∂ ∂+ = + + +
∂ ∂ ∂ ∂

                                                                                          (14) 
 From the equation (14), it is observed that the effect of 
radiation is to enhance the thermal diffusivity.  Two types of 
thermal boundary condition at the wall are considered and 
they are  

(a) Prescribed surface temperature (PST case) 
(b) Prescribed Heat Flux (PHF case) 

 
(a). Prescribed surface temperature (PST case) 
 
In this case, the boundary conditions are 

( ( ) ) 0.m
w

x
T T T A at y T T as y

L∞ ∞= = + = → → ∞      

(15) 

Where A is a constant, T∞  is the fluid temperature for away 

from the surface, wT  is the temperature at the wall and m 

is the parameter, by considering m=0    and  

 ( )
w

T T

T T
θ η ∞

∞

−=
−

                                                           (16)  

and using Eqs (5),(15)  and  (16) in Eq  (14)   in the form of          

( )2'' ' ' '' ' 20
0 0 1 0

2
( )

3

k
f k mf k Ec f k Eck fθ σ θ σ θ+ − = − −

                                                                                        (17) 

Where    
2 8/3

2/3
,

m

m

L
Ec

Acpx

υ −

−=                                         (18) 

 is the Eckert number, ( / )σ υ α=  is the Prandtl number , 

the primes  denote differentiation with respect  to  η , 
* * 3/ 4RN k k Tσ ∞= is the radiation  parameter and 

0 1k =  in Eq (17), the thermal radiation is neglected. It is 

realized that the x-coordinates cannot be eliminated from Eq 
(17) When 2 /3.m≠  So, the temperature profiles always 
depend on x.  

  It should be noted that the assumptions 0Ec = and 0 1k =  

reduces Eq.(17). Eq (8a) in their paper). The boundary condition 
for ( )θ η  follow from (15) and (16) as  1θ =  at 0;η =  0θ →  

as .η → ∞                    (19)     

   The rate of heat transfer of the surface is derived from Eqs  (12) 
(15)  and (16)    

    
1/3

'

00

( ) (0)
m

w r w

y

t kA x
q q

y k L L
θ

−

=

 ∂  = + = −   ∂   
           (20) 

Where k  is the thermal conductivity If 1/ 3m= , it is 

obvious from Eq .(20) that  



 
 

International Journal of Ethics in Engineering & Management Education 
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1, Issue 5, May2014) 

 

88 
 

    '

0

(0).w

kA
q

k L
θ= −                                  (21) 

Further if the thermal radiation effects are not 

considered ( i.e.,0 1k = )  Eq.(21) reduces to 

   '(0).w

kA
q

L
θ= −                                                   (22) 

  It should be appointed that the assumption 
2 /3.m= reduce Eq. (17) and Eq (18) to 

( ) 2'' ' ' '' 2 '
0 0 0 1

2
( ) ,

3
k f f k Ec f k k Ecfθ σ θ θ σ+ − = − −

i.e  ( ) 2 2'' ' ' '' '
0 0 1

2
( ) .

3
k f f k Ec f k fθ σ θ θ σ= − − +                                               

                                                                                  (23) 

     
2

2
.Ec

AL cp

υ=                                                  (24) 

and obviously all solutions are then of the similar type. 
 
(b) Prescribed Heat Flux (PHF case) 
 
        In PHF case, one may define a dimensionless new 
temperature variable as  

     
1/3 2/3

( ) ,
( / ) m m

T T
g

D k x L
η ∞

+ −

−=                                (25) 

With the following boundary conditions. 

0 : , .
m

w

w

t x
y q k D as y T

y L

 ∂  = = − = → ∞ → ∞   ∂   
                                                                                          (26)                                              
 Where D is a constant, and m=0 provides the constant heat 
flux case, Using Eqs.(5) and (25) 
  into Eq (14),one can find  

 
2'' ' ' ' '' 2 '0

0 0 0 1

2 1
( ) ( )

3 3

k
g fg k m f g k E c f k k Ecfσ σ σ σ+ − + = − −                                            

                    (27) 

Where,
2 10/3

'
1/3( / )

m

c m

L
E

D k cpx

υ −

−=                                        (28) 

is the Eckert number, ( / )σ υ α=  is the Prandtl number 

and ( )0 3 / 3 4 .R Rk N N= + Realize that the x-coordinates 

cannot be eliminated , from Eq (25)  When  1/ 3m≠   So, 
the temperature profiles always depend on x. 
    The boundary condition for ( )θ η  follow from (23) and 

(24) as  

   
' (0) 1; 0 .g asθ η= − → → ∞

               (29) 

1/ 3.if m = One can obtain from Eq.s  (27) and  (28) 

as 

( ) 2'' ' ' ' '' 2 '
0 0 0 1

2
( )

3
g k fg f g k E c f k k fσ σ σ+ − = − −                                                        

                                                                                 (30) 
2

'
3

.c

k
E

DL cp

υ=                                                      (31) 

and obviously all solutions are then of the similar type. 
 

4. RESULTS AND DISCUSSION: 

The problem for momentum and heat transfer in boundary 
layer fluid flow over a non-liner stretching surface in porous 
media with the combined effects of viscous dissipation and 
thermal radiation have been examined in this article. The 
basic boundary layer partial differential equations of 
momentum and heat transfer, which are highly non-linear, 
have been converted into a set of non-linear ordinary 
differential equations and their solutions are obtained 
numerically by Runge-Kutta method with shooting 
technique. The study has been extended for two different 
heating processes namely:  
(i) Prescribed power law surface temperature (PST) and  
(ii) Prescribed power law heat flux (PHF). 
Fig 2, illustrates the dimensionless stream function f , its 

derivatives ' ''f and f with 5.01 =k , As we seen the f 

and its derivatives satisfy the boundary conditions. 

Fig.3  and 4 shows the temperature profiles in both PST and 
PHF cases respectively for the effect of Prandtl number (Pr) 
on heat transfer. It is observed that as Prandtl number 
decreases, the thickness of the thermal boundary layer 
becomes greater than the thickness of the velocity boundary 
layer. So the thickness of the thermal boundary layer 
increases as Pr decreases and hence temperature profile 
decreases with increase of Prandtl Number Pr. The same 
effects have been observed in the figures Figs 9 and 10 
respectively for PHF case. 

Further the opposite effect has been observed for the effects 
of thermal radiation Nr in both cases (PST and PHF), which 
can be seen in figs 7, 8 (PST) and 13, 14 (PHF). 

Fig. 5, 6 &11, 12 demonstrates the effect of Eckert number 

Ec( 'Ec ) on the dimensionless temperature profile ( )θ η  in the 

case of PST and ( )g η  in the PHF case respectively.   

 The effect of increasing values of Eckert number Ec  

( 'Ec ) is to increase wall temperature due to heat addition 
by means of frictional heating. 

Table- 1. Wall temperature gradient [ '(0)θ− ] (PST case 

with 2 / 3m= ) and wall temperature [(0)g ]   (PHF case 
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with 1/ 3m = ) for various values of 

, ( )RN and Ec Ecσ ′  at different values of 1k  

 
 
 
 
 
 
 
 
                                                                  

                                                        ( )
1/3

4/3w xu x
L

υ=  

 
 
 
Fig 1. Schematic Diagram of Boundary layer flow on a 
moving continuous porous stretching sheet in a saturated 
porous medium 
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Fig 2 - A plots of the functions ' ",f f and f  Eqs 6-8, 

when k = 0.5 
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Fig 3 Temperature distribution for various values of Pr  
(PST case). 
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Fig 4 Temperature distribution for various values of Pr  

(PST case). 
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Fig 5 Temperature distribution for various values of Ec  

(PST case). 
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Temperature distribution for various values of Ec  (PST 

case). 
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Fig 7 Temperature distribution for various values of   Nr  

( PST case). 
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Fig 8 Temperature distribution for various values of Nr 

(PST case). 
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Fig  9 Temperature distribution for various values of Pr 

(PHF case). 
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Fig 10 Temperature distribution for various values of Pr  

(PHF case). 
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Fig 11   Temperature distribution for various values of  cE  

(PHF case). 
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Fig 12 Temperature distribution for various values of  'Ec  

(PHF case). 
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Fig 
13 Temperature distribution for various values of RN  

 ( PHF case). 
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Fig 14 Temperature distribution for various values ofRN     

( PHF case). 
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Table- 1. Wall temperature gradient [ '(0)θ− ] (PST case with 2 / 3m= ) and wall temperature [(0)g ] 

(PHF case with 1/ 3m= ) for various values of , ( )RN and Ec Ecσ ′  at different values of 1k  

 
 

σ  

 

Nr 

 

Ec(Ec’) 

 

'(0)θ−  

 

(0)g  

   Cortell 

[6] 

Present 

Study 

Present 

Study 

Cortell 

[6] 

Present 

Study 

Present 

Study 

   
1 0k =  1 0.5k =  1 0k =  1 0.5k =  

 0.5  0.53553 0.535936 0.475562 1.82027 1.757780 1.891947 

2 1 0.2 0.71646 0.713899 0.635942 1.37205 1.312961 1.416443 

 3  0.95660 0.947651 0.844488 1.04239 0.982945 1.071067 

 7  1.06963 1.057013 0.940956 0.93923 0.878837 0.964077 

         

0.71   0.35480 0.359562 0.317550 2.72682 2.634675 2.838411 

2 1 0.2 0.71646 0.713899 0.635942 1.37205 1.312961 1.416443 

3   0.91586 0.908171 0.809487 1.08597 1.028721 1.116371 

10   1.79029 1.742119 1.530645 0.59398 0.525615 0.611208 

         

  0 0.97887 0.973974 0.948314 1.02151 1.26721 1.054504 

3 1 0.2 0.91586 0.908171 0.809487 1.08597 1.30722 1.116371 

  1.0 0.66393 0.644959 0.254181 1.34327 1.56627 1.363843 
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Table- 2. Temperatures ( )θ η  and ( )g η when 2 3Rand Nσ = =  for several values of m 

With and without porous parameter1k . 

 
 
 
 

m  η  

Cortell [6] 

for 1 0k =  

Present study 

for 1 0.5k =  

Cortell [6] 

for 1 0k =  

Present study 

for 1 0.5k =  

( )θ η  ( )' 0θ−  ( )θ η  ( )' 0θ−  ( )g η  ( )g η−  ( )g η  ( )g η−  

0 0 1.0 0.60798 1.0 0.879564 1.20349 1.0 1.075900 1.000000 

 0.2 0.87912 0.59735 0.820448 0.890543 1.01467 0.88797 0.876301 0.973277 

 0.4 0.76229 0.56830 0.651234 0.790704 0.84823 0.77692 0.693087 0.849773 

 0.6 0.65270 0.52577 0.506607 0.653868 0.70359 0.67056 0.538276 0.697638 

 0.8 0.55254 0.47483 0.389460 0.520014 0.57951 0.57165 0.413501 0.553093 

 1.0 0.46303 0.42002 0.297347 0.404753 0.47431 0.48197 0.315600 0.429924 

 2.0 0.17079 0.18247 0.074140 0.104370 0.16226 0.18131 0.078672 0.110752 

 5.0 0.00545 0.00640 0.000001 0.001627 0.00482 0.00578 0.000001 0.001727 

          

1 0 1.0 1.19416 0.751732 1.0 0.74157 1.0 1.0 1.296053 

 0.2 0.78696 0.94531 0.573956 0.782952 0.56663 0.76025 0.767580 1.032067 

 0.4 0.61857 0.74607 0.436139 0.601797 0.43364 0.57801 0.584946 0.801317 

 0.6 0.48582 0.58751 0.330697 0.458641 0.33249 0.43984 0.444153 0.613912 

 0.8 0.38137 0.46191 0.250497 0.348280 0.25547 0.33521 0.336655 0.467361 

 1.0 0.29930 0.362770 0.189643 0.264095 0.19672 0.25596 0.254944 0.354797 

 2.0 0.08911 0.10782 0.046796 0.065961 0.05492 0.06885 0.062923 0.088693 

 5.0 0.00237 0.00289 0.000000 0.001027 0.00142 0.00170 0.0 0.001380 

          

3 0 1.0 1.96996 1.000000 2.004106 0.48203 1.0 0.496324 1.000000 

 0.2 0.67812 1.29791 0.683183 1.237316 0.32035 0.64420 0.338394 0.615885 

 0.4 0.46511 0.86337 0.483106 0.802736 0.21567 0.41961 0.338394 0.615885 

 0.6 0.32274 0.58034 0.350351 0.545890 0.14711 0.27657 0.173143 0.270280 

 0.8 0.22655 0.39440 0.258383 0.385460 0.10166 0.18456 0.127639 0.190592 

 1.0 0.16083 0.27107 0.192564 0.279547 0.07115 0.12473 0.090620 0.131167 

 2.0 0.03367 0.04907 0.046575 0.065819 0.01415 0.02114 0.023000 0.032503 

 5.0 0.00067 0.00083 -0.000001 0.001020 0.00028 0.00033 0.000000 0.000504 


