

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1, Issue 5, May2014)

52

QUERY PERFORMANCE FOR LARGE RDF
GRAPHS USING CLOUD COMPUTING

Anusha P A Prerana Malu Dohra yasmeen
Student Student Student

PDA College of Engineering, Gulbarga PDA College of Engineering, Gulbarga PDA College of Engineering, Gulbarga

Anusha.Alandkar.11@gmail.com Prerana.malu@gmail.com Yasmeen37@gmail.com

Abstract: Semantic web is an emerging area to augmented
human reasoning. Semantic web technologies are being
developed to present data in standardized way. And one such
standard is the Resource Description Framework (RDF).
Semantic web technologies can be utilized to build efficient and
scalable systems for Cloud Computing. This possess significant
challenges for the storage and retrieval of RDF graphs.
Current frameworks do not scale for large RDF graphs and as a
result do not address these challenges. In this paper, we
describe a framework that we built using Hadoop to store
and retrieve large numbers of RDF triples by exploiting the
cloud computing paradigm. We describe a scheme to store
RDF data in Hadoop Distributed File System. To determine the
jobs, we present an algorithm to generate query plan, whose
worst case cost is bounded, based on a greedy approach to
answer a SPARQL Protocol and RDF Query
Language(SPARQL) query. We use Hadoop’s MapReduce
framework to answer the queries.

Key words—Hadoop, RDF, SPARQL, MapReduce.

1 INTRODUCTION

Semantic Web technologies are being developed to present
data in standardized way such that such data can be retrieved
and understood by both human and machine. Historically,
web pages are published in plain html files which are not
suitable for reasoning. Researchers are developing Semantic
Web technologies that have been standardized to address such
inadequacies. The most prominent standards are Resource
Description Framework (RDF) and SPARQL Protocol and
RDF Query Language (SPARQL). RDF is the standard for
storing and representing data and SPARQL is a query
language to retrieve data from an RDF store. Cloud
Computing systems can utilize the power of these Semantic
Web technologies to provide the user with capability to
efficiently store and retrieve data for data intensive
applications. Semantic web technologies could be especially
useful for maintaining data in the cloud. Semantic web
technologies provide the ability to specify and query
heterogenous data in a standardized manner.

PROBLEM DEFINITION : At present, there are few
frameworks(e.g. RDF-3X, Jena, BigOWLIM)for Semantic
Web technologies, and these frameworks have limitations for
large RDF graphs. Therefore, storing a large number of RDF
triples and efficiently querying them is a challenging and
important problem. A distributed system can be built to
overcome the scalability and performance problems of current
Semantic Web frameworks. Databases are being distributed in
order to provide such scalable solutions.

2. RELATED WORK

Researchers and enterprises are using MapReduce
technology for web indexing, searches and data mining. In this
section, we will first investigate research related to
MapReduce. Next, we will discuss works related to the
semantic web.Google uses MapReduce for web indexing, data
storage and social networking. Yahoo! uses MapReduce
extensively in their data analysis tasks. IBM has successfully
experimented with a scale-up scale-out search framework
using MapReduce technology. In a recent work, they have
reported how they integrated Hadoop and System. Teradata
did a similar work by integrating Hadoop with a parallel
DBMS. Researchers have used MapReduce to scale up
classifiers for mining petabytes of data. They have worked on
data distribution and partitioning for data mining, and have
applied three data mining algorithms to test the performance.
Data mining algorithms are being rewritten in different forms
to take advantage of MapReduce technology. In researchers
rewrite well known machine learning algorithms to take
advantage of multicore machines by leveraging MapReduce
programming paradigm. Another area where this technology is
successfully being used is simulation. In researchers reported
an interesting idea of combining MapReduce with existing
relational database techniques. These works differ from our
research in that we use MapReduce for semantic web
technologies. Our focus is on developing a scalable solution
for storing RDF data and retrieving them by SPARQL queries.
MapReduce technology is becoming increasingly popular in

Pooja M Bhat Prof.Padmapriya.Patil
Student Professor & Guide

PDA College of Engineering, Gulbarga PDA College of Engineering, Gulbarga
Pooja.bhat99@gmail.com padmazapur@yahoo.co.in

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1, Issue 5, May2014)

53

the community which handles large amounts of data. It is the
most promising technology to solve the performance issues
researchers are facing in Cloud Computing.
 The work described in this paper differs in the following
ways: first, we have queried 1 billion triples. Second, a
storage schema is devised which is tailored to improve query
execution performance for RDF data. RDF triples is stored in
files based on the predicate of the triple and the type of the
object. Finally, an algorithm is described to determine a
query processing plan. By using this, the input files of a job
are determined and the order in which they should be run.
 Jena - is a semantic web framework for Jena. True to its
framework design, it allows integration of multiple solutions
for persistence. However, Jena is limited to a triple store
schema. Jena have very poor query performance for large
datasets. Furthermore, any change to the dataset requires
complete recalculation of the inferred triples.
 BigOWLIM - is among the fastest and most scalable
semantic web frameworks available. However, it is not as
scalable as our framework and requires very high end and
costly machines. It requires expensive hardware (a lot of main
memory) to load large datasets and it has a long loading time.
As our experiments show it does not perform well when there
is no bound object in a query. However, the performance of
our framework is not affected in such a case.
 RDF-3X - is considered the fastest existing semantic
web repository. In other words, it has the fastest query times.
RDF-3X uses histograms, summary statistics, and query
optimization to enable high performance semantic web
queries. However, RDF-3X’s performance degrades
exponentially for unbound queries, and queries with even
simple joins if the selectivity factor is low. This becomes
increasingly relevant for inference queries, which generally
require unions of subqueries with unbound objects.

3. PROPOSED METHODOLOGY:

 The architecture consists of two components. The
upper part of Figure depicts the data preprocessing component
and the lower part shows the query answering one. There are
three subcomponents for data generation and preprocessing.
RDF/XML is converted to N-Triples serialization format using
our N-Triples Converter component. The PS component takes
the N-Triples data and splits it into predicate files. The
predicate files are then fed into the POS component which
splits the predicate files into smaller files based on the type of
objects. The MapReduce framework has three subcomponents
in it. It takes the SPARQL query from the user and passes it to
the Input Selector and Plan Generator. This component selects
the input files, by using our algorithm , decides how many
MapReduce jobs are needed and passes the information to the
Join Executer component which runs the jobs using
MapReduce framework. . It then relays the query answer from
Hadoop to the user.

3.1 Data Generation and Storage:
 For our experiments, the LUBM dataset is used. The
LUBM data generator generates data in RDF/XML
serialization format. This format is not suitable for our
purpose because we store data in HDFS as flat files and so to
retrieve even a single triple we would need to parse the entire
file. Therefore the data is converted to N-Triples to store the
data, because with that format we have a complete RDF triple
(Subject, Predicate and Object) in one line of a file, which is
very convenient to use with MapReduce jobs. The processing
steps to go through to get the data into our intended format are
described in following sections.

Figure 3: the proposed architecture

3.2 File Organization
 We do not store the data in a single file because, in
Hadoop and MapReduce Framework, a file is the smallest unit
of input to a MapReduce job and, in the absence of caching, a
file is always read from the disk. If we have all the data in one
file, the whole file will be input to jobs for each query.
Instead, we divide the data into multiple smaller files. The
splitting is done in two steps which we discuss in the
following sections.
3.3 Predicate Split (PS): In the first step, the data is divided
according to the predicates. This division immediately enables
to cut down the search space for any SPARQL query which
does not have a variable predicate.
3.4 Predicate Object Split (POS): In the next step, the data is
divided depending upon the object type. So a single file
is now converted to numerous files so that the data can be
retrieved easily.

4. MAPREDUCE FRAMEWORK AND QUERY PLAN
GENERATION:
In this section, we discuss how to answer SPARQL
queries in our MapReduce framework component. Section 4.1
discusses the algorithm to select input files for answering the
query. Section 4.2 represents the query plan generation.

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1, Issue 5, May2014)

54

Section 4.3 presents our heuristics based algorithm to
generate a query plan.
4.1 Input Files Selection
1. Query 1
SELECT ?P ?Q ?R WHERE { ?P rdf : course_type.
?Q rdf :course_name .
?R rdf :course_stream . }

 Before determining the jobs, we select the files that
need to be inputted to the jobs. We have some query rewriting
capability which we apply at this step of query processing. We
take the query submitted by the user and iterate over the triple
patterns.

 2. Rewritten Query 1
 SELECT ?P ?Q ?R WHERE {
 ?P rdf : course .}

4.2 Query plan generation
In this section, first we define the query plan generation
problem. Then, we will present a heuristic algorithm to
generate an approximate solution to answer the query.
Running example: We will use the following query as a
running example in this section.
SELECT ?N, ?P, ?Q, ?R WHERE{
?P rdf : course_type.
?Q rdf : course_name.
?R ?N rdf : course_stream.
?P rdf : course_entry ?R.
?P rdf : course_entry ?Q. }
 In order to simplify the notations, we will only refer to
the TPs by the variable in that pattern. For example, the first
TP (?P rdf : course_type) will be represented as simply P.
Also, in the simplified version, the whole query would be
represented as follows: {P,Q,R,PR,PQ}. We shall use the
notation join(PQ,P) to denote a join operation between the two
TPs PQ and P on the common variable P.

4.3 Algorithm :

Step1: Start
Step2: A = Remove non-joining variables
Step3: generation of job plans
 while A ≠0 do
Step4 : Total number of jobs
 j = 1
Step5: Sort all the variables in A according to
 number of joining variables
 E={e1,……,ek}
Step6: List of join operations
 Job(j)=0
 temp = 0
Step7:Elimination of the variables
 for i=1 to K do
 if Can-Eliminate(A,ei)=true then
 temp = temp + Join(TP(A,ei))

 A = A - TP(A,ei)
 job(j) = job(j)+ join(TP(A,ei))
Step8: end if
Step9: end for
Step10: A = A + temp
Step11: j = j + 1
Step12: end while
Step13: return join operations
Step14:Stop

Description of Algorithm : . The algorithm starts by removing
all the non-joining variables from the query A. In our running
example, A={P,Q,NR,PQ,PR}, and removing the non-joining
variable N makes Q={P,Q,R,PQ,PR}. In the while loop, the
job plan is generated, starting from job(1). In step5, we sort the
variables according to the number of joining variables in the
resultant triple pattern after a complete elimination of variable.
The sorted variables are: E = {Q,R,P}, since Q, and R have
joining variables= 1, and P have joining variables=2. For each
job, the list of join operations are stored in the variable jobj ,.
And a temporary variable temp is used to store the resultant
triples of the joins to be performed in the current job. In the
for loop, each variable is checked to see if the variable can be
completely or partially eliminated. If yes, we store the join
result in the temporary variable , update A and add this join to
the current job. In our running example, this results in the
following operations. Iteration 1 of the for loop:
e1 (= Q) can be completely eliminated.
Here TP(A,Q) = the triple patterns in A containing Q
= {Q,PQ}. Join-result(TP(A,Q)) = Join result ({Q,PQ})
=resultant triple after the join(Q,PQ) = P. So, temp = {P}. A =
A - TP(A,Q)
= {P,Q,R,QP,PR} - {Q,PQ} = {P,R,PR}.
Job(1) = {join(Q,PQ)}.

5. CASE STUDY 1:
Flow of execution:

1. design of GUI
2. creation of database
3. linking the database and GUI
4. execution of normal queries
5. result analysis

1.The designing of the framework is done using ASP.NET
with Visual C#. Here the case study deals with course entry
and course search(course type, course name, course stream,
subject name).The design includes two modules namely
administration (admin) and user. Admin handles course entry
details and user deals with course search. The implementation
module is as follows

International Journal of
Website: www.ijeee.in (ISSN: 2348

Figure 5.1: design of GUI

2. Creation of tables : Here we create tables like login,
register, course_ entry and course_search
course_entry table

Course_type Course_name Course_stream
UG B.E EC
UG B.E CS
PG M.TECH EC

Table 1:Course_entry table

3. Linking database and GUI : Here the code is
retrieve the data from SQL Server through GUI, using the
SQL commands like select, update, delete and insert.
4. Execution of normal SQL Query : For example
 Select * from course_entry where course_type=
course_name=’B.E’, course_stream =’EC’
So the resultant table is

Table 2: Query result

5. RESULT ANALYSIS:

5.2: Result Analysis
The graph indicated in the above figure are the normal query
results of case study. Here the count for each query is
determined and the time taken can be shown in the graph. The
result shown is for smaller datasets and extend this case study
for larger datasets.

Course_type Course_name Course_stream
UG B.E EC

 Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1, Issue 5, May2014)

55

2. Creation of tables : Here we create tables like login,
register, course_ entry and course_search. For example:

Subject_name
HDL
OOPS
VLSI

ere the code is written to
retrieve the data from SQL Server through GUI, using the
SQL commands like select, update, delete and insert.

For example
where course_type=’UG’,

 Figure

The graph indicated in the above figure are the normal query
results of case study. Here the count for each query is
determined and the time taken can be shown in the graph. The
result shown is for smaller datasets and extend this case study

6.CASE STUDY 2:

 In this case study, an RDF graph is generated for
query given by the user. A Graphical User Interface (GUI) is
designed for the below block diagram shown. Firstly, user
sends a query which is searched in hadoop
cluster(cloud)/server then if it is foun
and converted to RDF/ Xml format which is passed on to SQL
to SPARQL translation and then finally the
obtained which display the time taken to answer the queries.

Figure 6.1: design of GUI

The RDF/XML format of the course entered will be created in
Root Folder. For example,
Input : id=1
 coursetype=UG
 Durcourse=4

 coursename=BE

 coursestream=EC

 subjectname=VLSI

Output : <NewDataSet>
 <Table>

 <id>1</id>

 <coursetype>UG</coursetype

 <durcourse>4</durcourse

 <coursename>BE</coursename

 <coursestream>EC</coursestream

 <subjectname>VLSI</subjectname

 </Table>

</NewDataSet>

 SPARQL Query:
1.SELECT ?: course_type where
 { ? rdf: course.}

2. Select ?:course_stream where
 { ? rdf : course.}
3. Select ?:course_stream where
 { ? rdf : course.}

Subject_name
HDL

Ethics in Engineering & Management Education
4748, Volume 1, Issue 5, May2014)

CASE STUDY 2:

In this case study, an RDF graph is generated for
query given by the user. A Graphical User Interface (GUI) is
designed for the below block diagram shown. Firstly, user
sends a query which is searched in hadoop
cluster(cloud)/server then if it is found , the file is downloaded
and converted to RDF/ Xml format which is passed on to SQL
to SPARQL translation and then finally the RDF graph is
obtained which display the time taken to answer the queries.

Figure 6.1: design of GUI

the course entered will be created in

coursetype>

durcourse>

coursename>

coursestream>

subjectname>

1.SELECT ?: course_type where

?:course_stream where

Select ?:course_stream where

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1, Issue 5, May2014)

56

RESULT OF CASE STUDY 2:

Figure 6.2 : result analysis
 The RDF graph indicated in the above figure are
the SPARQL query results of case study. Here the count for
each query is determined and the time taken can be shown in
the graph. The result shown is for larger datasets.

7. CONCLUSION

 At present, there are few frameworks(e.g. RDF-3X, Jena,
BigOWLIM)for Semantic Web technologies, and these
frameworks have limitations for large RDF graphs. To
overcome the performance, we describe a framework which is
capable of handling large amount of RDF data. Since the
framework is based on Hadoop, which is a distributed and
highly fault tolerant system, it inherits these two properties
automatically.
 In case of distributed system, the time
taken to answer the query using SPARQL is comparatively
less than that of normal SOL query language. The results
indicate that for very large datasets Hadoop RDF is preferable
and more efficient.

REFERENCES

[1]. “ Heuristics Based Query Processing for Large RDF Graphs Using

Cloud Computing” by Mohammad Husain, James McGlothlin,
Mohammad M. Masud, Latifur Khan, Bhavani Thuraisingham

[2]. A. Chebotko, S. Lu, F. Fotouhi, “Semantics Preserving SPARQL-to-
SQL Translation”, Technical report TR-DB-112007-CLF, 2007

[3]. Jacopo Urbani, Spyros Kotoulas, Eyal Oren and Frank van Harmelen,
“Scalable Distributed Reasoning Using MapReduce”, International
Semantic Web Conference, 2009.

[4]. Mohammad Farhan Husain, Pankil Doshi, Latifur Khan and Bhavani
Thuraisingham, “Storage and Retrieval of Large RDF Graph Using
Hadoop and MapReduce, CloudCom ‘09”: Proceedings of the 1st
International Conference on Cloud Computing, 2009.

[5]. Mohammad Farhan Husain, Latifur Khan, Murat Kantarcioglu and
Bhavani Thuraisingham, “Data Intensive Query Processing for Large
RDF Graphs Using Cloud Computing Tools”, IEEE Cloud 2010,
pp. 1-10, Miami, Florida, July 2010

[6]. J. Wang, S. Wu, H. Gao, J. Li, B. C. Ooi, “Indexing Multi-dimensional
Data in a Cloud System”, ACM Int’l. Conference on Management of
Data (SIGMOD), 2010.

[7]. Jesse Weaver and James A. Hendler,” Parallel Materialization of the
Finite RDFS Closure for Hundreds of Millions of Triples”, Proceedings
of the 8th International Semantic Web Conference, 2009

