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Abstract: Compressive sensing is a sampling method which prides
a new approach to efficient signal compression ancecovery by
exploiting the fact that a sparse signal can be sably reconstructed
from very few measurements. One of the most concesnin
compressive sensing is the construction of the séms matrices.
While random sensing matrices have been widely stietl, only a
few deterministic sensing matrices have been consied.
Originated as a technique for finding sparse solutins to
underdetermined linear systems, compressed sensifi@S) has now
found widespread applications in both Signal procesng and
Communication communities, ranging from data comprssion, data
acquisition, inverse Problems, and channel codingAn essential
idea of CS is to explore the fact that most naturabhenomena are
Sparse or compressible in some appropriate basisyBacquiring a
relatively small number of samples in the “sparse”domain, the
signal of interest can be reconstructed with high acuracy through
well-developed optimization procedures. These mates are highly
desirable on structure which allows fast implementdon with

reduced storage requirements. In this paper, a suey of
deterministic sensing matrices for compressive seing is presented.
Some recent results on construction of the determistic sensing
matrices are discussed.

Keywords. Deterministic measurement matrix construction,
decomposition, Compressive sensing, Wireless sens@tworks.

1. INTRODUCTION

Wireless sensor networks (WSNs) are networks ajraarhous,
wireless sensing nodes spatially categorized oeegphical
vicinity with application ranges from localizatisystems and
surveillance, to monitoring of environment for plegd ground
sensing and calamity avoidance. WSN nodes captheeslata
and then communicate them to a fusion center (R@ijch are
capable to stores the sensors’ evaluation or fatwhaat via a
wired network for further dispensation.

Compressed sensing is asignal processing technique
efficiently acquiring and reconstructing a signaly finding

solutions to underdetermined linear systems. In2NWusually
the readings of the sensor nodes have both spatratlation

due to the closeness of sensors’ geographical ibtmsatand
temporal correlation due to the smooth variatiohghe real
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world signal. These redundancies indicate that edata is
compressible along these dimensions. Thus, CS-bdssigin
can recover the whole network data from a few acgensor
nodes, which effectively reduces the overall numlmdr
transmissions from the sensor nodes and saves itkepgoer.
In, cross-layer designs are proposed to optimizergn
consumption in WSNs based on time division multipteess
(TDMA). Multiple-input and multiple-output (MIMO) rd
cooperative MIMO techniques are adopted to enhathee
spectral efficiency and achieve energy saving f@N4. Hence,
CS-based scheme is also an energy-efficient scfammeedium
access control in WSNs.

Recently, this technique has been proposed to \a=teaergy
efficient multiple access or routing protocol desfgr wireless
networks. In the case of medium access control (MASY
considering the scenario that only a small porabtransmitters
are active at a certain time instant, the aggrelgsigmal from all
the transmitters can be viewed as a sparse signahe
dictionary of an identity matrix.

Recently, several deterministic sensing matricese haeen
proposed. We can classify them into two categoiést are
those matrices which are based on coherence. Secerttiose
matrices which are based on RIP or some weaker. RIPs
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Data Loss Pattern:

Traditional work usually adopts that the data Ié@iows an
indiscriminate distribution. However, this assemtidoes not
apply to the WSN condition. According to the natoféNVSN,
we amalgamate several distinctive data loss owtline

Outlinel Element Random Loss (ERL): This is a very
simplest loss pattern in which data elements inntiagrix were

dropped randomly and independently. As shown in Kg), the
misplaced data for ERL are randomly dispersed énSW. The

noise and collision in WSN are the root cause afdom

element loss.

Outline 2 Block Random Loss (BRL): Data from adjacent
nodes in adjacent time slots are dropped indepdiydand

randomly. In WSN, congestion [8] always causes diaga on

high-density sensor nodes during a period of tifig. 1(b)

visualizes this scenario.

Outline 3 Element Frequent Loss in Row (EFLR):Unreliable

links [23] are common phenomenon in real wirelessnarios.
When the quality of link state is not good, senstata are prone
to loss due to the intermittent transmission. Asvah in Fig.

1(c), in EFLR, elements in some particular rowsehavhigher
missing probability.

Outline 4 Successive Elements Loss in Row (SELRThis

pattern models that a given node starts losing feoparticular
time slot. This type of loss occurs when some senedes are
damaged or run out of energy [20], which is madgbié by

Fig. 1(d).

Outline 5 Combinational Loss (CL): In real worldatd loss
always happens as a combination of some loss paiove.

2. LITERATURE SURVEY

T. Xue etal [1] has elaborated the role of commrdssensing in
wireless sensor networks in terms of medium aceeskdata
reconstruction. A CS-based multiple access schaateekploits
sparsity in the process of medium access, as wdhe spatial
and time correlations that exist in natural sigivedse presented.
A novel decision boundary was proposed to addresptoblem
of distinguishing between active and inactive traitiers after
symbol recovery. In the comparison between CSMA il
proposed CS-based scheme, they have found thatasing
communication SNR enhances the throughput of b&ME
and CS-based schemes. They have demonstratedrthe of
utilizing spatial and temporal correlations in regong data
measurements of the whole network. Linghe Kong ¢24l
developed an environmental space time improved cesspe
sensing (ESTICS) algorithm to optimize the missidgta
estimation. Their proposed approach significantiyperforms
existing solutions in terms of reconstruction aecyr ESTICS

79

can successfully reconstruct the environment vagts fthan 20%
error in face of 90% missing data.

The work introduces the use of compressed sensBfg) (
algorithms for data compression in wireless sentmraddress
the energy and telemetry bandwidth constraints comrto
wireless sensor nodes by Fred Chen etal [3]. Gimoaidels of
both analog and digital implementations of the @Stean are
presented that enable analysis of the power/petoce costs
associated with the design space for any potenGd
application, including analog-to-information contezs (AIC).
A. Dimakis, etal [4] presented a mathematical catina
between channel coding and compressed sensingprbiem
of accessing to global information from any singleint in
WSN, Yifeng Li etal [5] proposed a distributed ietwork data
acquisition approach, on the basis of compressérsiag, in
which sparse random projections and randomizedigiogsare
jointly designed. In the context of unreliable distited wireless
settings, a simple random gossip algorithm was tdpS.
Qaseem, etal [6] presented a compressive sensisgdba
opportunistic protocol for throughput improvementwireless
network. E. Candes, etal [7] surveys the theorgafipressive
sampling. CS theory asserts that one can recoviirteignals
and images from far fewer samples or measuremdrdn t
traditional methods use.

Current research studies recommend that in the afaseatially
sparse signals, the energy or bandwidth of RS aéeéficiency
worsens since the reconstruction correctness igressonly
when a huge number of sensors contribute to thesunements.
It is also very difficult to design a RS matrix whi suited to
sparse signals and allowing a proficient netwonktirg. It can
pointed out that, on spatially sparse signals, G&hous still
promises reconstruction correctness but at an ased number
of measurements (e.@4, up to 5056 of N), whereas for the same
values oM andN, RS only opportunistically achieves
reconstruction.

3. PROBLEM DEFINITION

Traditional data gathering and processing methom isse the
multi-hop route to transmit data from one sensorammther.
Finally the data will be transmitted to the sinkdecaccording to
the route. Disadvantage of traditional method lags the
unbalanced energy consumption for each sensor ante s
redundant data transmissions. The sensor clogfetsink will
consume more energy than other sensors. To avoid th
redundant data transmissions, some researcheslungodata
fusion methods to process data in WSNs. More caomegle
routing protocols and much higher computation gbilvill be
needed for each sensor. Sometimes data fusion deettamnot
solve unbalanced energy consumption problems.
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4. THE OBJECTIVES

First the adoption to compressive sampling theorygathering
each sensors monitoring value in WSNs, insteadsoriguthe
traditional multi-hop routing transmission schema feach
sensor. Second, instead of using random measuramark to
measure each sensor's monitoring value and recmhsthe
original signal, the proposal is to make a simpl¢ ore
efficient deterministic measurement matrix desi¢godathm to
achieve the better data gathering and original adign
reconstruction performance in WSNs. Third, extemsi
simulations and practical experiments of WSNs tghawvn that
if the proper number of measurements M, has beeserhthe
sensors’ monitoring values can be gathered effilsiers well as
the energy consumption can be reduced greatly lnygube
proposed algorithm.

5. PROPOSED WORK

Here the proposal is to try to minimize the energgisumption
rate by making use of the proposed algorithm. Thibw,

measurement and reconstruction of original sigather than
going for measurement of each sensor has been dodéience
it will avoid the use of multi-hop routing transrsign scheme
and it will use compressive sampling theory forhgaing each
sensor monitoring.

The basic idea is to firstly, adopt the compresseenpling

theory to gather each sensors monitoring value 8\N¢/ instead
of using the traditional multi-hop routing transei@ scheme
for each sensor. Secondly, instead of using rant@asurement

sensor i be ei, then the actual sensor readingretos node i is
yi = xi + ei. We will use x to denote the vectod[x2,..., xn]T
where T denotes matrix transpose; the vectors e yamle

similarly defined. Our goal is to obtain an approation x"=

['x1,x°2, ....x’'n] T of the true data field x. Wigll measure the
accuracy of the approximate data field by using¢fetive error
X—X"X where x = ni=1 x2i denotes the 2—norm of x.

We assume that both sensing energy and energyreeqfar

computation is negligible, which are fairly typicassumptions
in WSNs. The energy consumption in the WSNs is daied

by radio communications in transmitting and recdgjvidata
packets. In this paper, we will measure the eneampsumption
by the total number of transmissions required ttlecb the

information on data field. The reference scenasiovhen all
nodes in the network send the data to the sinkhwiequires a
number of transmissions of the order of n2 in theltiRmop

scenario. This work distinguishes itself from otheorks in

energy efficient adaptive sensing, e.g. in thauses recent
works in adaptive compressive sensing however atistirey

work in adaptive compressive sensing only takeso i
consideration the accuracy of the approximate digid. In

order to apply adaptive compressive sensing to W8Mswork

in this paper takes both accuracy and energy iotsideration.
In particular, we will show that there is a “crdager”

interaction in using adaptive compressive sensimgWSNs

where one needs to take both accuracy (at thecapipin layer)
and routing into consideration.

A distinctive feature of compressive sensing ist thauses
projections to collect information. For a snapshbthe noisy
data field {yi}, the projection of the vector y om projection

matrix to measure each sensor's monitoring valual anvector p = [pl, p2 ...,pn]T is defined by the inpeoduct pT y

reconstruct the original signal, the proposal isteate simple
but more efficient deterministic measurement maitlesign
algorithm to achieve the better data gatheringaiginal signal
reconstruction performance in WSNs. And sub sedalgntan
extensive simulations and practical experimentSM&Ns will
show that if the proper number of measurements &teteen
chosen then the sensors monitoring values can keerga
efficiently as well as the energy consumption canréduced
greatly by using the proposed algorithm.

The model WSN as a graph G = ({s}V,E) where s is the sink
node, V = {1,2, ..., n} is the set of sensor nodaed E is the set
of edges where an edge exists between two sendestibthey
are within the communication range of each otHéot¢ that the
framework described here can equally be applied wuster
with n sensor nodes and a cluster head, therefierenethod is
scalable.) We assume that the sensors are synzbdoniVe
consider a snapshot of the temporal-spatial fieleereshat a
particular time t, the sensors make a measurerbenthe noise-
free sensor reading of sensor node i (where i =,1n) be Xxi.
The actual (noisy or measured) sensor readingsisnasd to be
corrupted by an independent and identically disted zero
mean Gaussian noise of variang2. Let the sensor noise at
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=E. Let us illustrate the concept of projectiontees and how
projections can be calculated in a WSN with a fewneples.
Consider the network shown in Figure 1 with 4 semswmles {1,
2, 3, 4} and sink node s.

Example 1: If the projection vector p is [0.2, 0034, 0.1], then
the projected value pT y = 0.2y1+0.3y2+0.4y3+0.1y4.

The sink can obtain this projected value without gensors
sending their sensor readings to the sink. Thisbmachieved
by the sink passing a message along the tour S3—2S
using source routing in the WSN. The message amttie
entire projection vector p as well as a field i tmessage to
store the intermediate result of the projectiorcaiagtion. As the
message travels through the tour, each sensor temjts
contribution to the projected value and adds it tte
intermediate result. After that, the sensor writhe new
intermediate result to the message and forwardsnbesage to
the next hop. For example, sensor node 2 will xecdiom
sensor node 1 a message with 0.2yl as the inteateedisult;
sensor 2 will compute 0.3y2 and add this to 0.2k#&n it will
write the sum to the message and then pass it thretoext hop.
Note that the computation of this projection regsib wireless
transmissions.
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6. COMPRESSED SENSING FOR NETWORK DATA
RECOVERY

The data measurements built-up
phenomena have compressible (sparse) representatidhe
frequency or the wavelet domain. In other words,TDénd

DWT of the sensor readingkcan be sparse. For example, the

data of the temperature sensor readings provideth&yintel

Berkeley Research lab over a period of one monitibés both

the sparsity in the frequency domain by examinhmg readings
from all the sensor nodes at one time instant gadsgy in the
wavelet domain by examining the data readings fooe sensor
node in consecutive time intervals. Hence, comgsensing
can be utilized to recover both the spatially aechgorally

correlated data measurements. In network data eeg@art of

the wireless sensor network, the fusion centeizasl further
spatial and temporal correlations to recover tlagliregs from all
the sensor nodes over a number of consecutiveftanees.

7. RESULT

Scope of the project is to investigate compresdata gathering
and original signal reconstruction in wireless sensetworks
(WSNSs). By adopting the Compressive Sampling thedting
energy consumption can be balanced and the reduniidaa
transmissions can also be avoided. The data tréteshdan be
sparse in a certain domain and CS theory can maleetkat a
K-sparse signal can be reconstructed from a relatmall
number of measurements M with a probability evenaupne.
The following pie charts shows that the energy oamstions is
reduced, which is obtained by using deterministeasurement
matrix algorithm.

Network

Fig 1: Sensors Having Links, Ranges & Ids
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