

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1, Issue 2, February 2014)

14

Implementation and Porting of Light Weight TCP/IP for
Embedded Web Server (EWS)

HARIKRISHNA MUSINADA G. Sravanthi
Professor & HOD, ECE Student - M.Tech (Embedded Systems)

RVR Institute of Engineering & Technology RVR Institute of Engineering & Technology
Hyderabad, India Hyderabad, India

yemhechkay@gmail.com sravanthisuman@gmail.com

ABSTRACT: The development trend of embedded technology
need the web/server technology applies into embedded fields and
provides a flexible remote device monitoring and management
function based on Internet browser. But, due to the limitation of
hardware resource and the low-efficiency of general purpose
TCP/IP protocol stacks and protocol models, it is quite difficult
to implement full TCP/IP protocol into embedded system when
accessing to Internet. This project analyses the Light-Weight
TCP/IP and gives the detailed processing of the data happening
at every layer of the stack. Embedded Ethernet development
board from Silicon labs is used as hardware platform and real
time kernel µC/OS-II as software platform. Implementation of
web server involves two major challenges, first to port the kernel
onto the board and secondly port the LwIP stack making use of
OS real time kernel services. This includes writing the operating
abstraction layer, timer and Ethernet driver for packet handling.
A thin web server is then designed using the LwIP and the state
transform of client and server when they were communicating
was analyzed. At last, the EWS was tested on the home
automation system where the different appliances connected to
the target board can be monitored and controlled remotely. The
result indicated the EWS can long-distance monitor the devices
real-timely and perfectly. The advantages of this EWS are low
cost, visualization, platform independent, flexible deployment,
excellent remote accessing, etc. The equipments can be monitored
and controlled flexibly in web pages through embedded web
server. In industry control field, the using of embedded web
server on intelligence device, instrument and sensor to realize
flexible remote control has very high theoretical and application
value.

Key words: Ping, TCP/IP, EWS, LwIP, Layer, OS, Stack,
Protocol, ROM, API

1. INTRODUCTION

The development trend of embedded technology need the
web/server technology applies into embedded fields and
provides a flexible remote device monitoring and management
function based on Internet browser. But, due to the limitation
of hardware resource and the low-efficiency of general
purpose TCP/IP protocol stacks and protocol models, it is
quite difficult to implement full TCP/IP protocol into
embedded system when accessing to Internet. This project
analyses the Light-Weight TCP/IP and gives the detailed
processing of the data happening at every layer of the stack
and this stack consists of limited number of protocols in each
layer. Embedded target development board from Silicon labs

is used as hardware platform and real time kernel µC/OS-II as
software platform. Implementation of web server involves two
major challenges, first to port the kernel onto the board and
secondly port the lwIP stack making use of OS real time
kernel services. This includes writing the operating abstraction
layer, timer and Ethernet driver for packet handling. A thin
web server is then designed using the lwIP and the state
transform of client and server when they were communicating
was analyzed. At last, the EWS was tested on the industrial
automation system consisting of heat sensor and cooling
device connected to the target board to monitor and control
remotely.
 The advantages of this EWS are low cost, visualization,
platform independent, flexible deployment, excellent remote
accessing, etc. The equipments can be monitored and
controlled flexibly through web pages through embedded web
server. In industry control field, the using of embedded web
server on intelligence device, instrument and sensor to realize
flexible remote control has very high theoretical and
application value.

The objective of this paper is to build an embedded
web server, which allows users to monitor and control their
embedded applications using any standard browser.
Implementation of web server involves two major challenges,
first to port the kernel onto the target board and secondly port
the LwIP stack making use of OS real time kernel services.
This includes writing the operating abstraction layer, timer and
Ethernet driver for packet handling. Understand the Real Time
µC/OS-II concepts, porting the OS onto a 8051
Microcontroller and then testing the real time capabilities of
the kernel with a real time application. The real time
application for this paper is to monitor the industrial process
temperature. In this paper each and every layer of the TCP/IP
protocol suite is implemented as shown in the below figure
1.2, Physical layer and Data link layer are implemented on the
Hardware and network layer, Transport layer and application
layer on the software.

APPLICATION LAYER (HTTP)
TRANSPORT LAYER (TCP)

NETWORK LAYER (IP, ICMP, ARP)
DATALINK LAYER (CP2200 ETHERNET

CONTROLLER)
PHYSICAL LAYER (CROSS OVER CABLE)

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1, Issue 2, February 2014)

15

Figure.1. TCP/IP Layers

In this paper Data link layer is implemented on the Ethernet
controller chip cp2200 and for implementing Network layer
and Transport layer we use LwIP and HTTP protocol in the
application layer.

2. LwIP STACK

The traditional Internet web/server is the fat server/thin
client, this mode is perfect when translate and store abundance
of data, but doesn’t behave excellent in embedded field. And
the Internet has become one of the most important basic
information facilities in the world, the WWW service it offers
has become one of the fastest growing and widest applied
service, which have a great deal of advantages such as
visualization, easy remote accessing, multi data format
supporting, platform independent and thin client, etc.
Connecting the embedded device to the Internet,
implementing perfect Web service on it, and thus realizing a
flexible remote monitoring and management through Internet
browser has already become an inevitable development trend
of embedded Technology. But, due to the limitation of
hardware resource and the low-efficiency of general purpose
TCP/IP protocol stacks and protocol models, it is quite
difficult to implement full TCP/IP protocol into embedded
system when accessing to Internet. Therefore, we need to port
a subnet of TCP/IP into the embedded system.

2.1. Protocol layering: The protocols in the TCP/IP suite are
designed in a layered fashion, where each protocol layer
solves a separate part of the communication problem. This
layering can serve as a guide for designing the implementation
of the protocols, in that each protocol can be implemented
separately from the other. Implementing the protocols in a
strictly layered way can however, lead to a situation where the
communication overhead between the protocol layers
degrades the overall performance. To overcome these
problems, certain internal aspects of a protocol can be made
known to other protocols. Care must be taken so that only the
important information is shared among the layers. Most
TCP/IP implementations keep a strict division between the
application layer and the lower protocol layers, whereas the
lower layers can be more or less interleaved. In most operating
systems, the lower layer protocols are implemented as a part
of the operating system kernel with entry points for
communication with the application layer process. The
application program is presented with an abstract view of the
TCP/IP implementation, where network communication
drivers only very little from inter-process communication o.
The implication of this is that since the application program is
unaware of the buffer mechanisms used by the lower layers, it
cannot utilize this information to, e.g., reuse buffers with
frequently used data. Also, when the application sends data,
this data has to be copied from the application process'
memory space into internal buffers before being processed by
the network code.

The operating systems used in minimal systems such
as the target system of LwIP most often do not maintain a
strict protection barrier between the kernel and the application
processes. This allows using a more relaxed scheme for
communication between the application and the lower layer
protocols by the means of shared memory. In particular, the
application layer can be made aware of the buffer handling
mechanisms used by the lower layers. Therefore, the
application can more efficiently reuse buffers. Also, since the
application process can use the same memory as the
networking code the application can read and write directly to
the internal buffers, thus saving the expense of performing a
copy. As in many other TCP/IP implementations, the layered
protocol design has served as a guide for the design of the
implementation of lwIP. Each protocol is implemented as its
own module, with a few functions acting as entry points into
each protocol. Even though the protocols are implemented
separately, some layer violations are made, as discussed
above, in order to improve performance both in terms of
processing speed and memory usage. For example, when
verifying the checksum of an incoming TCP segment and
when demultiplexing a segment, the source and destination IP
addresses of the segment has to be known by the TCP module.
Instead of passing these addresses to TCP by the means of a
function call, the TCP module is aware of the structure of the
IP header, and can therefore extract this information by itself.
lwIP consists of several modules. Apart from the modules
implementing the TCP/IP protocols (IP, ICMP, UDP, and
TCP) a number of support modules are implemented. The
support modules consists of the operating system emulation
layer , the buffer and memory management subsystems ,
network interface functions and functions for computing the
Internet checksum.

2.2. Process model: The process model of a protocol
implementation describes in which way the system has been
divided into different processes. One process model that has
been used to implement communication protocols is to let
each protocol run as a standalone process. With this model, a
strict protocol layering is enforced, and the communication
points between the protocols must be strictly divided. While
this approach has its advantages such as protocols can be
added at runtime, understanding the code and debugging is
generally easier, there are also disadvantages. The strict
layering is not, as described earlier, always the best way to
implement protocols. Also, and more important, for each layer
crossed, a context switch must be made. For an incoming TCP
segment this would mean three context switches, from the
device driver for the network interface, to the IP process, to
the TCP process and finally to the application process. In most
operating systems a context switch is fairly expensive.
 Another common approach is to let the communication
protocols reside in the kernel of the operating system. In the
case of a kernel implementation of the communication
protocols, the application processes communicate with the
protocols through system calls. The communication protocols
are not strictly divided from each other but may use the

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1, Issue 2, February 2014)

16

techniques of crossing the protocol layering. LwIP uses a
process model in which all protocols reside in a single process
and are thus separated from the operating system kernel.
Application programs may either reside in the LwIP process,
or be in separate processes. Communication between the
TCP/IP stack and the application programs are done either by
function calls for the case where the application program
shares a process with LwIP, or by the means of a more
abstract API. Having LwIP implemented as a user space
process rather than in the operating system kernel has both its
advantages and disadvantages. The main advantage of having
lwIP as a process is that is portable across different operating
systems. Since LwIP is designed to run in small operating
systems that generally do not support neither swapping out
processes not virtual memory, the delay caused by having to
wait for disk activity if part of the LwIP process is swapped or
paged out to disk will not be a problem. The problem of
having to wait for a scheduling quantum before getting a
chance to service requests still is a problem however, but there
is nothing in the design of LwIP that precludes it from later
being implemented in an operating system kernel.

2.3. The operating system emulation layer: In order to make
LwIP portable, operating system specific function calls and
data structures are not used directly in the code. Instead, when
such functions are needed the operating system emulation
layer is used. The operating system emulation layer provides a
uniform interface to operating system services such as timers,
process synchronization, and message passing mechanisms. In
principle, when porting LwIP to other operating systems only
an implementation of the operating system emulation layer for
that particular operating system is needed. The operating
system emulation layer provides a timer functionality that is
used by TCP. The timers provided by the operating system
emulation layer are one-shot timers with a granularity of at
least 200 ms that calls a registered function when the time-out
occurs. The only process synchronization mechanism provided
is semaphores. Even if semaphores are not available in the
underlying operating system they can be emulated by other
synchronization primitives such as conditional variables or
locks.

The message passing is done through a simple
mechanism which uses an abstraction called mailboxes. A
mailbox has two operations: post and fetch. The post operation
will not block the process; rather, messages posted to a
mailbox are queued by the operating system emulation layer
until another process fetches them. Even if the underlying
operating system does not have native support for the mailbox
mechanism, they are easily implemented using semaphores.

2.4. Buffer and memory management: The memory and
buffer management system in a communication system must
be prepared to accommodate buffers of very varying sizes,
ranging from buffers containing full-sized TCP segments with
several hundred bytes worth of data to short ICMP echo
replies consisting of only a few bytes. Also, in order to avoid
copying it should be possible to let the data content of the

buffers reside in memory that is not managed by the
networking subsystem, such as application memory or ROM.

2.5. IP processing: LwIP implements only the most basic
functionality of IP. It can send, receive and forward packets,
but cannot send or receive fragmented IP packets nor handle
packets with IP options. For most applications this does not
pose any problems.

2.6. TCP processing: TCP is a transport layer protocol that
provides a reliable byte stream service to the application layer.
TCP is more complex than the other protocols described here,
and the TCP code constitutes 50% of the total code size of
lwIP. The basic TCP processing is divided into six functions;
the functions tcp_input (), tcp_process (), and tcp receive ()
which are related to TCP input processing, and tcp write (),
tcp_enqueue (), and tcp_output () which deals with output
processing.

Figure.2. TCP Processing

When an application wants to send TCP data, tcp write () is
called. The function tcp write () passes control to tcp
enqueue() which will break the data into appropriate sized
TCP segments if necessary and put the segments on the
transmission queue for the connection. The function
tcp_output() will then check if it is possible to send the data,
i.e., if there is enough space in the receiver's window and if
the congestion window is large enough and if so, sends the
data using ip_route() and ip_output if(). Input processing
begins when ip_input () after verifying the IP header hands
over a TCP segment to tcp input (). In this function the initial
sanity checks (i.e., check summing and TCP options parsing)
are done as well as deciding to which TCP connection the
segment belongs. The segment is then processed by
tcp_process(), which implements the TCP state machine, and
any necessary state transitions are made. The function
tcp_receive () will be called if the connection is in a state to
accept data from the network. If so, tcp_receive () will pass
the segment up to an application program. If the segment
constitutes an ACK for unacknowledged (thus previously
buffered) data, the data is removed from the buffers and its
memory is reclaimed. Also, if an ACK for data was received
the receiver might be willing to accept more data and therefore
tcp output() is called.

2.7. Application Program Interface (API): The Application
Program Interface (API) defines the way the application
program interacts with the TCP/IP stack. The most commonly
used API for TCP/IP is the BSD socket API which is used in

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1, Issue 2, February 2014)

17

most UNIX systems and has heavily influenced the Microsoft
Windows WinSock API. Because the socket API uses stop-
and wait semantics, it requires support from an underlying
multitasking operating system. Since the overhead of task
management, context switching and allocation of stack space
for the tasks might be too high in the intended LwIP target
architectures, the BSD socket interface is not suitable for our
purposes. lwIP provides two APIs to programmers: proto
sockets, a BSD socket-like API without the overhead of full
multi-threading, and a "raw" event-based API that is more
low-level than proto sockets but uses less memory.

3. HTTP PROTOCOL IN APPLICATION LAYER

In this paper http protocol is followed in the

application layer to communicate with the clients. Http runs
on the TCP port 80 and it is the standard followed by all the
servers. Hypertext Transfer Protocol (HTTP) is the
communication protocol used to exchange information
between a client system and a Web server across a TCP/IP
connection. The interchange is generally referred to as an
HTTP transaction. In an HTTP transaction, the client system
opens a TCP connection with the Web server and submits an
HTTP request. The Web server, in turn, issues an HTTP
response, completing one HTTP transaction. HTTP is
stateless, in that there is no provision in the protocols design
for information about any single request persisting beyond one
transaction. A client connects to the server at port 80 and
sends a request. The request line from the client consists of a
request method, the address of the file requested and the
HTTP version number. GET /HTTP/1.1 the response line
contains information on the HTTP version number, a status
code that indicates the result of the request from the client and
a description of the status code in 'English'. HTTP/1.1 200 OK
There are many status codes for each and every action. For
example if the requested page was not found in the server than
“404 error” will be served to the client.

3.1. HTTP Request Methods:

• GET Method: The Get method is used to getting the data

from the server. Get method appends the parameters
passed as query string to a URL, in the form of key-
value pairs. for example, if a parameter is name =
Williams, then this string will be appended in the URL.
By default the method is Get.

• POST Method: The post method is used for sending data
to the server. In post method the query string is
appended along the request object, they do not get
appended in the URL, so parameters transfer in hidden
form.

• HEAD Method: When a user wants to know about the
headers, like MIME types, char set, Content- Length
then we use Head method. With this nobody content is
returned.

• These three are commonly used methods. While Get and
Post methods are most widely used. There are more
methods of http protocols which are rarely used by they
have been given here for your knowledge.

• TRACE Method: Trace on the resource returns the
content of the resource. Asks for a loopback of the
request message, so that the use can see what is being
received on the other side.

• DELETE Method: It is used for delete the resources,
files at the requested URL

• OPTIONS Method: It lists the Http methods to which the
thing at the requested URL can respond.

• PUT Method: It put the enclosed information at the
requested URL.

• CONNECT Method: It connects for the purpose of
tunneling.

3.2. TCP Connection Establishment Process: The "Three-
Way Handshake" As http uses TCP in the transport layer for
communicating with the client we need to establish a
connection prior to the http transaction and this method is
popularly known as three way hand shake. To establish a
connection, each device must send a SYN and receive an ACK
for it from the other device. Thus, conceptually, we need to
have four control messages pass between the devices.
However, it's inefficient to send a SYN and an ACK in
separate messages when one could communicate both
simultaneously. Thus, in the normal sequence of events in
connection establishment, one of the SYNs and one of the
ACKs is sent together by setting both of the relevant bits (a
message sometimes called a SYN+ACK). This makes a total
of three messages, and for this reason the connection
procedure is called a three-way handshake.

Figure.3. Three-way handshake.

3.3. TCP Connection Termination: In the normal case, each
side terminates its end of the connection by sending a special
message with the FIN (finish) bit set. This message,
sometimes called a FIN, serves as a connection termination
request to the other device, while also possibly carrying data
like a regular segment. The device receiving the FIN responds

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1, Issue 2, February 2014)

18

with an acknowledgment to the FIN to indicate that it was
received. The connection as a whole is not considered
terminated until both sides have finished the shut down
procedure by sending a FIN and receiving an ACK. Thus,
termination isn't a three-way handshake like establishment: it
is a pair of two-way handshakes. The states that the two
devices in the connection move through during a normal
connection shutdown are different because the device
initiating the shutdown must behave differently than the one
that receives the termination request. In particular, the TCP on
the device receiving the initial termination request must
inform its application process and wait for a signal that the
process is ready to proceed.

Figure.4. Four way handshake

4. TESTING AND RESULTS

The developed embedded web server is tested by opening any
standard web browser like Mozilla Firefox and internet
explorer and typing the embedded web server address i,e.
http://192.168.0.2 and a web page is obtained on the browser
window with the temperature data in it and with a button to
monitor the devices as shown in figure 5, Using ping
command the connectivity between the client and the server is
verified and we can find that four requests are sent from the
client and the same number of replies is received from the
server as shown in the figure 7.

4.1. Wire shark: Wire shark is the open source packet analyzer
by which we can check packet traffic which are coming and
going in to the system. By using this tool we have verified the
packets flow between the EWS and the client and the obtained
results are shown in the figure 8. In this we can find the
TCP packets traffic between the client and the server and the
http packets sent and received from the server.

Figure.5. web page

Figure.6. hyper terminal

Figure.7. checking connectivity

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1, Issue 2, February 2014)

19

Figure.8. Wire-shark traffic analyzer

5. CONCLUSION

Using PING command to link EWS in local area network,
we can get four response data packages and the time it used is
less than 20ms and there is no data package lost. When we
input the IP address of embedded web server, we can open the
web page through the browser quickly and correctly. From the
obtained web page we can monitor the temperature reading
and control the LED. Thus we can believe the EWS can long-
distance monitor and control the devices real-timely and
perfectly.

REFERENCES

1. “The Porting and Implementation of Light-Weight TCP/IP for Embedded
Web Server” IEEE-2008, WEI CHEN, SHU-BO QIU, YING-CHUN
ZHANG. Department of Automation of Shandong Institute of Light
Industry, Jinan, China.

2. “Design and implementation of the LWIP TCP/IP Stack” by Adam
Dunkels.

3. “µC/OS-II, the Real-Time Kernel” by Jean J. Labrosse.
4. C8051F120TB manual from silicon laboratories
5. RFC-2616 HTTP/1.1

About the authors:

Professor HARIKRISHNA MUSINADA
received Bachelor of Engineering and
M.Tech degrees in ECE from Marathwada
University, Aurangabad and JNTU-
Hyderabad. He is currently Professor in
ECE Department of RVR Institute of
Engineering & Technology, Hyderabad and

pursuing Ph.D degree at Department of ECE OU-Hyderabad.
He has 8 Research papers into his credit published in various
International Journals, Magazines and Conference
Proceedings. He is an active life member of professional
bodies like Indian Society for Technical Education (MISTE),
Institution of Electronics and Telecommunication Engineers
(MIETE) , Society of EMC Engineers (INDIA) - SEMCE (I).
Secured Best Teacher Award in the course of teaching and

inspiring many students in the academics. He has conducted
many conferences, workshops, short term courses and was
convener for many technical symposiums in the Engineering
colleges he worked. He was Co-Chairman to one of the
technical sessions of 2nd International Conference on
Innovations in Electronics and Communication Engineering
(ICIECE) organized by ECE Department of Guru Nanak
Institutions Technical Campus (GNITC) on 9-10 August, 2013
in association with IETE, ISTE, CSI and BESI. He is an
Associate Editor for International Journal of Pure Research in
Engineering and Technology (IJPRET) and Governing Body
Member for International Journal of Ethics in Engineering and
management Education (IJEEE). His currently research
interests include Mixed Signal VLSI design, Bio Technology
with Signal Processing.

G. Sravanthi Received B.Tech Degree in
Electronics and Communication
Engineering from the University of JNTU
And M. Tech Studying In The University
Of JNTU Hyderabad .Up to Now Attended
Several National And International
Conferences, Workshops Research

Development Programs. Research Interested In Embedded
Systems and Attended Several Faculty Development
Programs.

