International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1sdue 2, February 2014)

Implementation and Porting of Light Weight TCP/t? f
Embedded Web Server (EWS)

HARIKRISHNA MUSINADA
Professor & HOD, ECE
Institute of Engineering & Technology
Hyderabad, India
yemhechkay@gmail.com

RVR

ABSTRACT: The development trend of embedded technology
need the web/server technology applies into embedtiéelds and
provides a flexible remote device monitoring and maagement
function based on Internet browser. But, due to thdimitation of
hardware resource and the low-efficiency of generapurpose
TCP/IP protocol stacks and protocol models, it is qgite difficult
to implement full TCP/IP protocol into embedded systm when
accessing to Internet. This project analyses the LighWeight
TCP/IP and gives the detailed processing of the dataappening
at every layer of the stack. Embedded Ethernet devabment
board from Silicon labs is used as hardware platfan and real
time kernel uC/OS-Il as software platform. Implemenation of
web server involves two major challenges, first tport the kernel
onto the board and secondly port the LwIP stack makig use of
OS real time kernel services. This includes writinghe operating
abstraction layer, timer and Ethernet driver for packet handling.
A thin web server is then designed using the LwIP ahthe state
transform of client and server when they were commuicating
was analyzed. At last, the EWS was tested on the hem
automation system where the different appliances cmected to
the target board can be monitored and controlled renotely. The
result indicated the EWS can long-distance monitothe devices
real-timely and perfectly. The advantages of this EV8 are low
cost, visualization, platform independent, flexibledeployment,
excellent remote accessing, etc. The equipments das monitored
and controlled flexibly in web pages through embeded web
server. In industry control field, the using of emkedded web
server on intelligence device, instrument and sensdo realize
flexible remote control has very high theoretical ad application
value.

Key words: Ping, TCP/IP, EWS, LwlIP, Layer, OS, Stack,
Protocol, ROM, API

1. INTRODUCTION

The development trend of embedded technology need t
web/server technology applies into embedded fiedasl
provides a flexible remote device monitoring ancheagement
function based on Internet browser. But, due tolithéation
of hardware resource and the low-efficiency of gehe
purpose TCP/IP protocol stacks and protocol modelss
quite difficult to implement full TCP/IP protocolnto
embedded system when accessing to Internet. Thgqgbr
analyses the Light-Weight TCP/IP and gives the itta
processing of the data happening at every layahefstack
and this stack consists of limited number of protedn each
layer. Embedded target development board from @iliabs

14

G. Sravanthi
Student - M.Tech (Embeddeste3ys)
RVRnstitute of Engineering & Technology
Hyderabad, India
sravanthisuman@gmail.com

is used as hardware platform and real time ker@Os-Il as
software platform. Implementation of web serverives two
major challenges, first to port the kernel onto bward and
secondly port the IwIP stack making use of OS ti#ak
kernel services. This includes writing the opegtibstraction
layer, timer and Ethernet driver for packet hargllid thin
web server is then designed using the IwIP and stiage
transform of client and server when they were cominating
was analyzed. At last, the EWS was tested on tHastmnial
automation system consisting of heat sensor andingoo
device connected to the target board to monitor eomtrol
remotely.

The advantages of this EWS are low cost, alization,
platform independent, flexible deployment, excdllemmote
accessing, etc. The equipments can be monitored and
controlled flexibly through web pages through endmstiweb
server. In industry control field, the using of eedded web
server on intelligence device, instrument and settsoealize
flexible remote control has very high theoreticahda
application value.

The objective of this paper is to build an embedded
web server, which allows users to monitor and adritreir
embedded applications using any standard browser.
Implementation of web server involves two majorlmges,
first to port the kernel onto the target board aadondly port
the LwIP stack making use of OS real time kerneVises.
This includes writing the operating abstractionelgyimer and
Ethernet driver for packet handling. UnderstandReal Time
MC/OS-Il concepts, porting the OS onto a 8051
Microcontroller and then testing the real time dajitées of
the kernel with a real time application. The reahet
application for this paper is to monitor the indistprocess
temperature. In this paper each and every layéneof CP/IP
protocol suite is implemented as shown in the befgure
1.2, Physical layer and Data link layer are implatad on the
Hardware and network layer, Transport layer andiegupon
layer on the software.

APPLICATION LAYER (HTTP)
TRANSPORT LAYER (TCP)
NETWORK LAYER (IP, ICMP, ARP)
DATALINK LAYER (CP2200 ETHERNET
CONTROLLER)
PHYSICAL LAYER (CROSS OVER CABLE)

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1sdue 2, February 2014)

Figure.1. TCP/IP Layers

In this paper Data link layer is implemented on Htleernet
controller chip cp2200 and for implementing Netwtaker
and Transport layer we use LwIP and HTTP protacdhe
application layer.

2. LwlIP STACK

The traditional Internet web/server is the fat sefthin
client, this mode is perfect when translate andesadundance
of data, but doesn’'t behave excellent in embedasd. fAnd
the Internet has become one of the most importasicb
information facilities in the world, the WWW sereidt offers
has become one of the fastest growing and wideglkiegp
service, which have a great deal of advantages ssch
visualization, easy remote accessing, multi dataméb
supporting, platform independent and thin clientic. e
Connecting the embedded device to the
implementing perfect Web service on it, and thudizeng a
flexible remote monitoring and management througierhet
browser has already become an inevitable developtremd
of embedded Technology. But, due to the limitatioh
hardware resource and the low-efficiency of genprapose
TCP/IP protocol stacks and protocol models, it igitey
difficult to implement full TCP/IP protocol into dmdded
system when accessing to Internet. Therefore, wd @ port
a subnet of TCP/IP into the embedded system.

The operating systems used in minimal systems such
as the target system of LwlP most often do not taaina
strict protection barrier between the kernel areldpplication
processes. This allows using a more relaxed schime
communication between the application and the lolager
protocols by the means of shared memory. In pdaticthe
application layer can be made aware of the buffardling
mechanisms used by the lower layers. Therefore,
application can more efficiently reuse buffers. dlsince the
application process can use the same memory as
networking code the application can read and vdiitectly to
the internal buffers, thus saving the expense ofopming a
copy. As in many other TCP/IP implementations, lthered
protocol design has served as a guide for the desighe
implementation of IwlP. Each protocol is implemeahtas its
own module, with a few functions acting as entrynginto
each protocol. Even though the protocols are implaed
separately, some layer violations are made, asushied

the

the

Internetahove, in order to improve performance both in teraf

processing speed and memory usage. For examplen whe
verifying the checksum of an incoming TCP segmemd a
when demultiplexing a segment, the source andrdgiin IP
addresses of the segment has to be known by thenTaciBle.
Instead of passing these addresses to TCP by thasntd a
function call, the TCP module is aware of the dtitee of the

IP header, and can therefore extract this infolonaliy itself.
IwlP consists of several modules. Apart from thedoles
implementing the TCP/IP protocols (IP, ICMP, UDmda
TCP) a number of support modules are implementdw: T

2.1. Protocol |ayering: The prOtOCOlS in the TCP/IP suite are Support modules consists of the Operating Systenmaamn

designed in a layered fashion, where each prottaptr
solves a separate part of the communication problEms
layering can serve as a guide for designing thdeémpntation
of the protocols, in that each protocol can be éenmnted
separately from the other. Implementing the praodo a
strictly layered way can however, lead to a sibrativhere the
communication overhead between the protocol

layer , the buffer and memory management subsystems
network interface functions and functions for catipg the
Internet checksum.

2.2. Process model: The process model of a protocol
implementation describes in which way the system lheen

layergivided into different processes. One process mthl has

degrades the overall performance. To overcome thesgeen used to implement communication protocolsoidet

problems, certain internal aspects of a protocal lca made
known to other protocols. Care must be taken sbahly the
important information is shared among the layersosiM
TCP/IP implementations keep a strict division betwehe
application layer and the lower protocol layers,evdas the
lower layers can be more or less interleaved. Istroperating
systems, the lower layer protocols are implemeate@ part

each protocol run as a standalone process. Wishntlodel, a
strict protocol layering is enforced, and the comination
points between the protocols must be strictly dididWhile
this approach has its advantages such as protcemisbe
added at runtime, understanding the code and dé&lydg
generally easier, there are also disadvantages. Sthet
layering is not, as described earlier, always thst lvay to

of the operating system kernel with entry pointsr fo jmplement protocols. Also, and more important,dach layer
communication with the application layer processheT crossed, a context switch must be made. For anriimgpTCP
application program is presented with an abstramt\of the segment this would mean three context switchesn fthe
TCP/IP implementation, where network communicationdevice driver for the network interface, to thegRcess, to

drivers only very little from inter-process commeation o.

The implication of this is that since the applioatprogram is
unaware of the buffer mechanisms used by the Idayers, it

cannot utilize this information to, e.g., reuse fetd with

frequently used data. Also, when the applicationdsedata,
this data has to be copied from the applicationcese’
memory space into internal buffers before beingpssed by
the network code.

15

the TCP process and finally to the application pssc In most
operating systems a context switch is fairly expans

Another common approach is to let theewnication
protocols reside in the kernel of the operatingesys In the
case of a kernel implementation of the communicatio
protocols, the application processes communicatd wie
protocols through system calls. The communicatimtqezols
are not strictly divided from each other but maye ube

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1sdue 2, February 2014)

techniques of crossing the protocol layering. LwiBes a
process model in which all protocols reside inrgks process
and are thus separated from the operating systemelke
Application programs may either reside in the Lvgi@cess,
or be in separate processes. Communication betwleen
TCP/IP stack and the application programs are dither by
function calls for the case where the applicationgpam

buffers reside in memory that is not managed by the
networking subsystem, such as application memoR@¥.

2.5. IP processing: LwIP implements only the most basic
functionality of IP. It can send, receive and forv@ackets,
but cannot send or receive fragmented IP packeathaodle
packets with IP options. For most applications thi&s not

shares a process with LwlP, or by the means of @aemo pose any problems.

abstract APIl. Having LwIP implemented as a usercspa
process rather than in the operating system kéraeboth its
advantages and disadvantages. The main advantdgeviof
IwIP as a process is that is portable across éiffeoperating
systems. Since LwIP is designed to run in smallratiey
systems that generally do not support neither simgpput
processes not virtual memory, the delay causedaving to
wait for disk activity if part of the LwIP processswapped or
paged out to disk will not be a problem. The problef
having to wait for a scheduling quantum before iggtta
chance to service requests still is a problem hewewt there
is nothing in the design of LwlIP that precludedram later
being implemented in an operating system kernel.

2.3. The operating system emulation layer: In order to make
LwlIP portable, operating system specific functiaadls and
data structures are not used directly in the cbdtead, when
such functions are needed the operating system atiowl
layer is used. The operating system emulation lpyavides a
uniform interface to operating system services agtimers,
process synchronization, and message passing nisefgain

principle, when porting LwIP to other operating teyss only
an implementation of the operating system emuldtager for

that particular operating system is needed. Theratipg

system emulation layer provides a timer functidgathat is
used by TCP. The timers provided by the operatiygiem
emulation layer are one-shot timers with a graryleof at

least 200 ms that calls a registered function whertime-out
occurs. The only process synchronization mechapiavided
is semaphores. Even if semaphores are not availabiee

underlying operating system they can be emulatecthgr
synchronization primitives such as conditional &hkes or
locks.

2.6. TCP processing: TCP is a transport layer protocol that
provides a reliable byte stream service to theieaibn layer.
TCP is more complex than the other protocols desedrhere,
and the TCP code constitutes 50% of the total cige of
IwlP. The basic TCP processing is divided into fsinctions;
the functions tcp_input (), tcp_process (), and regeive ()
which are related to TCP input processing, andwdge (),
tcp_enqueue (), and tcp_output () which deals wititput
processing.

Figure.2. TCP Processing
When an application wants to send TCP data, tcpewjiis
called. The function tcp write () passes control ttp
enqueue() which will break the data into appropriaized
TCP segments if necessary and put the segmentshen t
transmission queue for the connection. The function
tcp_output() will then check if it is possible tersl the data,
i.e., if there is enough space in the receiverisdawv and if
the congestion window is large enough and if sadsethe
data using ip_route() and ip_output if(). Input g@esing
begins when ip_input () after verifying the IP headhands
over a TCP segment to tcp input (). In this funetibe initial
sanity checks (i.e., check summing and TCP optarsing)
are done as well as deciding to which TCP connectie
segment belongs. The segment is then processed by

Netuork intexface layer

The message passing is done through a simplep_process(), which implements the TCP state maghind

mechanism which uses an abstraction called maithore
mailbox has two operations: post and fetch. The ppsration
will not block the process; rather, messages postedh
mailbox are queued by the operating system emuldéiger
until another process fetches them. Even if theetlgiohg
operating system does not have native supporhntailbox
mechanism, they are easily implemented using seonaph

24. Buffer and memory management: The memory and
buffer management system in a communication systerst
be prepared to accommodate buffers of very vargizgs,
ranging from buffers containing full-sized TCP semts with
several hundred bytes worth of data to short ICMiRoe
replies consisting of only a few bytes. Also, ider to avoid
copying it should be possible to let the data caintef the

16

any necessary state transitions are made. The idanct
tcp_receive () will be called if the connectioniisa state to
accept data from the network. If so, tcp_receivavi() pass
the segment up to an application program. If thgnsmt
constitutes an ACK for unacknowledged (thus presipu
buffered) data, the data is removed from the bsftend its
memory is reclaimed. Also, if an ACK for data waseived
the receiver might be willing to accept more datd therefore
tcp output() is called.

2.7. Application Program Interface (API): The Application
Program Interface (API) defines the way the apflca
program interacts with the TCP/IP stack. The mostmonly
used API for TCP/IP is the BSD socket API whiclused in

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1sdue 2, February 2014)
most UNIX systems and has heavily influenced therb&oft * These three are commonly used methods. While Gkt an

Windows WinSock API. Because the socket APl useg-st Post methods are most widely used. There are more
and wait semantics, it requires support from aneudgihg methods of http protocols which are rarely usedhsy
multitasking operating system. Since the overhehdask have been given here for your knowledge.
management, context switching and allocation ofksegpace « TRACE Method: Trace on the resource returns the
for the tasks might be too high in the intended Rwérget content of the resource. Asks for a loopback of the
architectures, the BSD socket interface is notabigt for our request message, so that the use can see whahgs be
purposes. IwIP provides two APIs to programmersotqr received on the other side.
sockets, a BSD socket-like API without the overheédull « DELETE Method: It is used for delete the resources,
multi-threading, and a "raw" event-based API ttatniore files at the requested URL
low-level than proto sockets but uses less memory. « OPTIONS Method: It lists the Http methods to whibl
thing at the requested URL can respond.
3. HTTP PROTOCOL IN APPLICATION LAYER e PUT Method: It put the enclosed information at the

requested URL.

In this paper http protocol is followed in the , coNNECT Method: It connects for the purpose of
application layer to communicate with the cliertitp runs tunneling.

on the TCP port 80 and it is the standard followgdall the

servers. Hypertext Transfer Protocol (HTTP) is the3_2_ TCP Connection Establishment Process The "Three-
communicatio_n protocol used to exchange informatiorWay Handshake" As http uses TCP in the transpgetrléor
between a client _system and a Web server acrosSRiIF communicating with the client we need to establiah
connection. The interchange is generally refer@das an onnection prior to the http transaction and thisthod is
HTTP transaction. In an HTTP transaction, the d:luiystem popularly known as three way hand shake. To estald
opens a TCP connection with the Web server and ssizm connection, each device must send a SYN and reaaiveCK
HTTP request. Th? Web server, in turn, issues amT o0 it from the other device. Thus, conceptuallye weed to
response, completing _one HT.TP transaction. HT.TP '%ave four control messages pass between the devices
stateless, in that there is no provision in thetquols design |0 aver it's inefficient to send a SYN and an AGK
for information about any single request persisbegond one separate’ messages when one could communicate both
transaction. A client connects to the server at B and simultaneously. Thus, in the normal sequence ohsvén
sends a request. The request line from _the cliensists of a . nection establishrﬁent, one of the SYNs and dnthe
request method, the address of the file requestetitae Ac-ks is sent together by setting both of the refaits (a

HTTP. ve_rsion nl_meer. GET /HTTP/1._1 the response lin message sometimes called a SYN+ACK). This makexad t
contains information on the HTTP version numbestaus of three messages, and for this reason the coonecti

code that indicates the result of the request fitearclient and ;
rocedure is called a three-way handshake.
a description of the status code in 'English’. HILTP200 OK P y

There are many status codes for each and evemynadior -
example if the requested page was not found iséneer than Client Server
“404 error” will be served to the client. Client State Server State
,
3.1. HTTP Request Methods: Wait For server Passive Open: l
Active Open: Create Greate T8
TCB, Send SYN
* GET Method: The Get method is used to getting #ta d v [sYN Wait For Client
from the server. Get method appends the parameter = L T e s i
passed as query string to a URL, in the form of-key to s (@) A senesmeacK
value pairs. for example, if a parameter is name = FYNACK
Williams, then this string will be appended in tH&L. 7 e S UG (e
By default the method is Get. sendAst o
* POST Method: The post method is used for senditg da N]
to the server. In post method the query string is
appended _along the request object, they do_ not ge Figure.3, Three-way handshake.
appended in the URL, so parameters transfer inemdd
form. 3.3. TCP Connection Termination: In the normal case, each

« HEAD Method: When a user wants to know about theside terminates its end of the connection by sendispecial
headers, like MIME types, char set, Content- Lengthmessage with the FIN (finish) bit set. This message
then we use Head method. With this nobody content isometimes called a FIN, serves as a connectionirtation
returned. request to the other device, while also possiblyyoag data

like a regular segment. The device receiving th¢ felsponds

17

E

International Journal of Ethics in Engineering & Management Education
Website: www.ijeee.in (ISSN: 2348-4748, Volume 1sdue 2, February 2014)

with an acknowledgment to the FIN to indicate thawvas — EEEEII ==

received. The connection as a whole is not consitler = ¢ = « wmeees -
terminated until both sides have finished the SHOIVN | ——
procedure by sending a FIN and receiving an ACKusTh EMBEDDED WEB SERVER
termination isn't a three-way handshake like esthivient: it
is a pair of two-way handshakes. The states thattivo The current temperature is 42 degrees
devices in the connection move through during amabr
connection shutdown are different because the devic
initiating the shutdown must behave differentlyrtithe one
that receives the termination request. In particute TCP on
the device receiving the initial termination requesust
inform its application process and wait for a sigtat the
process is ready to proceed.

Client Server
Client State Server State . -
F|gure 5 web page
Receive Close
* SIIAALE M APY. Normal Operation = embedded_web_server - HyperTerminal EEX)
Send FIN FIN Fie Edt Wiew Cal Transfer Help
Receive FiN, D= 3 DB\ &
Wait for ACK and Send ACK, -
l FIN From Server gl | LR C8051F12x MCU Initialized
Receive ACK Booting MicroC0S The Real Timer Kernel.
FIN-WAIT-2 (Wait for App) Reset Pin Driven Low. Could indicate power failure.
Reset Pin Driven Low. Could indicate power failure.
Wait for Server FIN App Is Ready To tart
P
FIN — | e Oscillator and Self Initialization Complete
Receive FIN, -
send ACK \ Wait for ACK
to FIN =wn CP220x_HW_Reset ok ===
_ ACK Auto-Negotiation Passed
.-u Receive ACK sem wait
sem wait . .)
Wait For Double ig;pw;?gt; message: ip: neither tcp nor icmp.
. Maximum Segment Temperature 42 i i .
: Life (MSL) Time luip log wessage: ip: neither top nor icmp.
. sem wal
x Temperature 42
¥ — v
Figure.6. hyper terminal

Figure.4. Four way handshake
+ C:\WINDOWS\system32\cmd.exe

4 TESTING AND RESULTS e (:upixtlg]lnzd;:;ﬁs R e e %ﬁ?ﬂ]
" IC:~Docunments and Settings“\adminsms>ping 192_168.0.2
Pinging 192.168.8.2 with 32 bytes of data:
The developed embedded web server is tested byngpany Rebly from 1331105°0:21 B cinedine L2
standard web browser like Mozilla Firefox and intr e CRDEED Saierel]
. ing statistics for -
explorer and typing the embedded web server address Fatketst, ot fets ‘::;::":;‘ A= C

Mininum = Oms, Maximum - Bms. Average

http://192.168.0.2 and a web page is obtained erbthwser RS,
window with the temperature data in it and with w@ithn to EEEEEEEETLECERTE IR FIE I IEe
L. . 7 Reply from 192_168 2 g time<ims TTL=128
command the connectivity between the client andsthger is
Sent = 4. Received = 4. Lost {Bx loss>.
Mininum = Bms, Maximum = Bms,. Average =

monitor the devices as shown in figure 5, Usinggpin jSStsgese: g s 3 cinedine THCiZg
Reply from 122.168 H time<{ims TTL=128
. . [Ping statistics for 192_.168.8.2:
verified and we can find that four requests ard §iemm the (S s b it s Pl
client and the same number of replies is receivedhfthe IR
server as shown in the figure 7.

4.1. Wire shark: Wire shark is the open source packet analyze
by which we can check packet traffic which are aggnand
going in to the system. By using this tool we hagéfied the
packets flow between the EWS and the client anadktained
results are shown in the figure 8. In this we camd fthe
TCP packets traffic between the client and the exeand the
http packets sent and received from the server.

Figure.7. checking connectivity

18

E

International Journal of Ethics in Engineering & Management Education

Website: www.ijeee.in (ISSN:

2348-4748, Volume 1sdue 2, February 2014)

o 7S e TSN Sea0 WARSEoY TEny WESSIAB0 WEsT SACK FEReT
FEp ™ itp 5 48202 [6VN, ACK] $8qe0 ACKF Win<d38 Len-d MESeaSH

Tee 45200 > hutp k] seqeL Ackel Win-LS6is Lenso

HTTP GET / H

52 es
192,165,
167,168

152.168. [7ce segrent

]
rep 3 aoegs ack) senct A(ksll7 virs4ss Lero
Ack-d: 6201 L

e 40 -2 Sl
Len=0 MSS=45

o
0.2
0.2
0.1
0.1
0.2
0.1
.0.2
02
0.1
.0.2
0L
0.2
0.2
0.1
0.1
.0.2
0L
0.2
0.2
0L
0.2
0.1
0.2 43206 > heep ek seqlA(k 2 \Anmisete Lareo
0.2 /L1

E

B

oczn 99 82 032 00 50 8 372590cnaooaosooz ot
¥ 00 00 02 04 05 bé 01 03 03 02 £

beis 328 .

Dset| [0 0@ 7| | |
=Q | 5 untted -pare

: Figure.8. Wire-shark traffic analyzer

g

e okt

(T

7] @ .0t et

1116
Frday

5. CONCLUSION

Using PING command to link EWS in local area networ
we can get four response data packages and thettireed is
less than 20ms and there is no data package ldstnWe
input the IP address of embedded web server, wegan the
web page through the browser quickly and corre&itgm the
obtained web page we can monitor the temperatwading
and control the LED. Thus we can believe the EWSloag-
distance monitor and control the devices real-tymahd
perfectly.

REFERENCES

“The Porting and Implementation of Light-Weight TiHPfor Embedded
Web Server” IEEE-2008, WEI CHEN, SHU-BO QIU, YINGHON

ZHANG. Department of Automation of Shandong Ingst of Light
Industry, Jinan, China.

“Design and implementation of the LWIP TCP/IP Stady Adam

Dunkels.

“uClOS 1, the Real-Time Kernel” by Jean J. Labrosse.

C8051F120TB manual from silicon laboratories

RFC-2616 HTTP/1.1

arw

About the authors:

Professor HARIKRISHNA MUSINADA
received Bachelor of Engineering and
M.Tech degrees in ECE from Marathwada
University, Aurangabad and JNTU-
Hyderabad. He is currently Professor in
ECE Department of RVR Institute of
Engineering & Technology, Hyderabad and
pursuing Ph.D degree at Department of ECE OU-Hymkata
He has 8 Research papers into his credit publighedrious
International Journals, Magazines and
Proceedings. He is an active life member of probesd
bodies like Indian Society for Technical Educat{dMISTE),
Institution of Electronics and Telecommunicationgireers
(MIETE) , Society of EMC Engineers (INDIA)SEMCE (I).
SecuredBest Teacher Awardin the course of teaching and

19

inspiring many students in the academics. He haslwted
many conferences, workshops, short term coursesvasd
convener for many technical symposiums in the Eewiimg
colleges he worked. He was Co-Chairman to one ef th
technical sessions ofnd International Conference on
Innovations in Electronics and Communication Engiivgg
(ICIECE) organized by ECE Department of Guru Nanak
Institutions Technical Campus (GNITC) on 9-10 Aug2913

in association with IETE, ISTE, CSI and BESI. Heas
Associate Editor for International Journal of PResearch in
Engineering and TechnologydPRET) and Governing Body
Member for International Journal of Ethics in Eregning and
management EducationlJEEE). His currently research
interests include Mixed Signal VLSI design, Bio firology
with Signal Processing.

G. Sravanthi Received B.Tech Degree in
Electronics and Communication
Engineering from the University of JNTU
And M. Tech Studying In The University
Of JNTU Hyderabad .Up to Now Attended
Several National And International
Conferences, Workshops Research
Development Programs. Research Interested In Enededd
Systems and Attended Several Faculty Development
Programs.

Conference

